Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 939 - 965
Published online 08 May 2023
  • N. Adler, Reducing the curse of dimensionality, in PCA-DEA. Reducing the curse of dimensionality, in Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, edited by J. Zhu and W.D. Cook. Cook. Springer, New York (2007) 139–153. [Google Scholar]
  • N. Adler and E. Yazhemsky, Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction. Eur. J. Oper. Res. 202 (2010) 273–284. [CrossRef] [Google Scholar]
  • A. Ahmadvand, Z. Abtahy and M. Bashiri, Considering undesirable variables in PCA-DEA method: a case of road safety evaluation in Iran. J. Ind. Eng. Int. 7 (2011) 43–50. [Google Scholar]
  • R.K. Ahuja and J.B. Orlin, Inverse optimization. Oper. Res. 49 (2001) 771–783. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Alinezhad, A. Makui and R.K. Mavi, An inverse DEA model for inputs/outputs estimation with respect to decision maker’s preferences: the case of Refah bank of IRAN. Math. Sci. 1 (2007) 61–70. [Google Scholar]
  • H.A.H. Al Tamimi, A. Duqi, A. Kanas and P.D. Zervopoulos, Directional distance function DEA estimators for evaluating efficiency gains from possible mergers and acquisitions. J. Oper. Res. Soc. 73 (2022) 1240–1257. [CrossRef] [Google Scholar]
  • G.R. Amin and S. Al-Muharrami, A new inverse data envelopment analysis model for mergers with negative data. IMA J. Manage. Math. 29 (2018) 137–149. [Google Scholar]
  • G.R. Amin and M. Ibn Boamah, A two-stage inverse data envelopment analysis approach for estimating potential merger gains in the US banking sector. Manage. Decis. Econ. 42 (2021) 1454–1465. [CrossRef] [Google Scholar]
  • A. Azadeh, S.F. Ghaderi, Y.P. Miran, V. Ebrahimipour and K. Suzuki, An integrated framework for continuous assessment and improvement of manufacturing systems. Appl. Math. Comput. 186 (2007) 1216–1233. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • B. Bayaraa, T. Tarnoczi and V. Fenyves, Corporate performance measurement using an integrated approach: a Mongolian case. Montenegrin J. Econ. 16 (2020) 123–134. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • S. Chauhan, Measuring Financial Efficiency and Ranking of Indian MFIs: An Analysis using DEA vs. PCA. Int. J. Manage. Rev. 17 (2021) 61–99. [Google Scholar]
  • L. Chen and Y.M. Wang, Limitation and optimization of inputs and outputs in the inverse data envelopment analysis under variable returns to scale. Expert Syst. App. 183 (2021) 115344. [CrossRef] [Google Scholar]
  • L. Chen, Y. Wang, F. Lai and F. Feng, An investment analysis for China’s sustainable development based on inverse data envelopment analysis. J. Cleaner Prod. 142 (2017) 1638–1649. [CrossRef] [Google Scholar]
  • L. Chen, Y. Gao, M.J. Li, Y.M. Wang and L.H. Liao, A new inverse data envelopment analysis approach to achieve China’s road transportation safety objectives. Safety Sci. 142 (2021) 105362. [CrossRef] [Google Scholar]
  • F. Deng, L. Xu, Y. Fang, Q. Gong and Z. Li, PCA-DEA-tobit regression assessment with carbon emission constraints of China’s logistics industry. J. Cleaner Prod. 271 (2020) 122548. [CrossRef] [Google Scholar]
  • A. Emrouznejad, G.L. Yang and G.R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. J. Oper. Res. Soc. 70 (2019) 1079–1090. [CrossRef] [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (General) 120 (1957) 253–281. [Google Scholar]
  • H.P. Fu and J.R. Ou, Combining PCA with DEA to improve the evaluation of project performance data: a Taiwanese Bureau of Energy case study. Project Manage. J. 44 (2013) 94–106. [Google Scholar]
  • S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. [Google Scholar]
  • M. Ghiyasi, Inverse DEA based on cost and revenue efficiency. Comput. Ind. Eng. 114 (2017) 258–263. [Google Scholar]
  • S. Ghobadi, Merging decision-making units with interval data. RAIRO: Oper. Res. 55 (2021) S1605–S1631. [CrossRef] [EDP Sciences] [Google Scholar]
  • J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson and R.L. Tatham, Pearson New International Edition. Multivariate Data Analysis. Pearson, Essex (2014). [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA models. Appl. Math. Comput. 169 (2005) 905–916. [Google Scholar]
  • A. Jakaitiené, A. Zilinskas and D. Stumbriene, Analysis of education systems performance in European Countries by Means of PCA-DEA. Inf. Edu. 17 (2018) 245–263. [Google Scholar]
  • D. Jothimani, R. Shankar and S.S. Yadav, A PCA-DEA framework for stock selection in Indian stock market. J. Modell. Manage. (2017). DOI: 10.1108/JM2-09-2015-0073. [Google Scholar]
  • S. Lertworasirikul, P. Charnsethikul and S.C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: the case of variable returns to scale. Comput. Ind. Eng. 61 (2011) 1017–1023. [Google Scholar]
  • H.T. Lin, An efficiency-driven approach for setting revenue target. Decis. Support Syst. 49 (2010) 311–317. [Google Scholar]
  • F.H. Lotfi, N.E. Ghazi, S.E. Ghazi and M.A. Namin, The outputs estimation of a DMU according to improvement of its progress in context dependent DEA. Appl. Math. Sci. 6 (2012) 247–258. [Google Scholar]
  • H. Moazeni, B. Arbabshirani and S.R. Hejazi, An integrated model of network Data Envelopment Analysis and principal component analysis approach to calculate the efficiency of industrial units (Case study: Stone Industry). J. Ind. Syst. Eng. 14 (2022) 172–192. [Google Scholar]
  • H. Moazeni, B.A. Shirani and S.R. Hejazi, An integrated game theoretic model and network data envelopment analysis to determine optimal export allocation to industrial units (A case study of the stone industry). J. Comput. Sci. 64 (2022) 101868. [CrossRef] [Google Scholar]
  • E.N. Ntabe, L. LeBel, A.D. Munson and L.A. Santa-Eulalia, A systematic literature review of the supply chain operations reference (SCOR) model application with special attention to environmental issues. Int. J. Prod. Econ. 169 (2015) 310–332. [CrossRef] [Google Scholar]
  • R. Põldaru and J. Roots, A PCA-DEA approach to measure the quality of life in Estonian counties. Soc.-Econ. Planning Sci. 48 (2014) 65–73. [CrossRef] [Google Scholar]
  • M.M. Tavakoli and H. Shirouyehzad, Application of PCA/DEA method to evaluate the performance of human capital management: a case study. Data Envelopment Anal. Decis. Sci. 2013 (2013) 1–20. [CrossRef] [Google Scholar]
  • Q. Wei, J. Zhang and X. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
  • T.H. Wu, Y.F. Chung and S.W. Huang, Evaluating global energy security performances using an integrated PCA/DEA-AR technique. Sustain. Energy Technol. Assess. 45 (2021) 101041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.