Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 927 - 938
Published online 08 May 2023
  • T. Antczak, Exact penalty functions method for mathematical programming problems involving invex functions. Eur. J. Oper. Res. 198 (2009) 29–36. [CrossRef] [Google Scholar]
  • T. Antczak, A new exact exponential penalty function method and nonconvex mathematical programming. Appl. Math. Comput. 217 (2011) 6652–6662. [MathSciNet] [Google Scholar]
  • T. Antczak and A. Pitea, Parametric approach to multitime multiobjective fractional variational problems under (f, ρ)-convexity. Opt. Control App. Methods 37 (2016) 831–847. [CrossRef] [Google Scholar]
  • M. Arana-Jiménez, R. Osuna-Gómez, G. Ruiz-Garzón and M. Rojas-Medar, On variational problems: characterization of solutions and duality. J. Math. Anal. App. 311 (2005) 1–12. [CrossRef] [Google Scholar]
  • M. Arana-Jiménez, G. Ruiz-Garzón, A. Rufián-Lizana and R. Osuna-Gómez, A necessary and sufficient condition for duality in multiobjective variational problems. Eur. J. Oper. Res. 201 (2010) 672–681. [CrossRef] [Google Scholar]
  • A. Baranwal, A. Jayswal and Preeti, Robust duality for the uncertain multitime control optimization problems. Int. J. Robust Nonlinear Control 32 (2022) 5837–5847. [CrossRef] [Google Scholar]
  • K. Das and S. Treanță, Constrained controlled optimization problems involving second-order derivatives. Quaestiones Math. (2022) 1–11. [Google Scholar]
  • I.P. Debnath and N. Pokharna, On optimality and duality in interval-valued variational problem with b − (p, r)-invexity. RAIRO: Oper. Res. 55 (2021) 1909–1932. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Green and F. Valentine, On the arzela-ascoli theorem. Math. Mag. 34 (1961) 199–202. [Google Scholar]
  • M. Hanson, Bounds for functionally convex optimal control problems. J. Math. Anal. App. 8 (1964) 84–89. [CrossRef] [Google Scholar]
  • A. Jayswal and A. Baranwal, Relations between multidimensional interval-valued variational problems and variational inequalities. Kybernetika 58 (2022) 564–577. [MathSciNet] [Google Scholar]
  • A. Jayswal and A. Baranwal, Robust approach for uncertain multi-dimensional fractional control optimization problems. Bull. Malaysian Math. Sci. Soc. 46 (2023) 75. [CrossRef] [Google Scholar]
  • A. Jayswal and S. Choudhury, Convergence of exponential penalty function method for variational problems. Proc. Nat. Acad. Sci. India Sect. A: Phys. Sci. 89 (2019) 517–524. [CrossRef] [Google Scholar]
  • A. Jayswal and Preeti, An exact minimax penalty function approach to solve multitime variational problems. RAIRO: Oper Res. 54 (2020) 637–652. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Jayswal, T. Antczak and S. Jha, On equivalence between a variational problem and its modified variational problem with the η-objective function under invexity. Int. Trans. Oper. Res. 26 (2019) 2053–2070. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Jayswal, A. Baranwal and M. Arana-Jiménez, G-penalty approach for multi-dimensional control optimization problem with non-linear dynamical system. Int. J. Control 1–22 (2022). [Google Scholar]
  • C. Jiang, Existence and uniqueness result for a class of mixed variational problems. J. Inequalities App. 2018 (2018) 1–16. [CrossRef] [Google Scholar]
  • P. Mandal, B. Giri and C. Nahak, Variational problems and l1 exact exponential penalty function with (p, r)-ρ-(η, θ)-invexity. Adv. Model. Optim. 16 (2014) 243–259. [Google Scholar]
  • B. Mond and I. Husain, Sufficient optimality criteria and duality for variational problems with generalised invexity. ANZIAM J. 31 (1989) 108–121. [Google Scholar]
  • F.H. Murphy, A class of exponential penalty functions. SIAM J. Control 12 (1974) 679–687. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Pitea and M. Postolache, Duality theorems for a new class of multitime multiobjective variational problems. J. Global Optim. 54 (2012) 47–58. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Pitea and M. Postolache, Minimization of vectors of curvilinear functionals on the second order jet bundle: necessary conditions. Optim. Lett. 6 (2012) 459–470. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Pitea and M. Postolache, Minimization of vectors of curvilinear functionals on the second order jet bundle: sufficient efficiency conditions. Optim. Lett. 6 (2012) 1657–1669. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Treanță, PDE-constrained vector variational problems governed by curvilinear integral functionals. Appl. Anal. Optim. 3 (2019) 83–101. [MathSciNet] [Google Scholar]
  • S. Treanță, On well-posedness of some constrained variational problems. Mathematics 9 (2021) 2478. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.