Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1195 - 1208
DOI https://doi.org/10.1051/ro/2023058
Published online 18 May 2023
  • H. Abdollahzadeh Ahangar, M. Chellali, M. Hajjari and S.M. Sheikholeslami, Further progress on the total Roman {2}-domination number of graphs. Bull. Iran. Math. Soc. 48 (2022) 1111–1119. [CrossRef] [Google Scholar]
  • H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami and J.C. Valenzuela-Tripodoro, Total Roman {2}-dominating functions in graphs. Discuss. Math. Graph Theory 42 (2022) 937–958. [Google Scholar]
  • B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs. Taiwanese J. Math. 12 (2008) 213–225. [MathSciNet] [Google Scholar]
  • G.J. Chang, B.-J. Li and J. Wu, Rainbow domination and related problems on strongly chordal graphs. Discrete Appl. Math. 161 (2013) 1395–1401. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}-domination. Discrete Appl. Math. 204 (2016) 22–28. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in Topics in Domination in Graphs, edited by T.W. Haynes, S.T. Hedetniemi and M.A. Henning. Springer, Berlin/Heidelberg (2020) 365–409. [CrossRef] [Google Scholar]
  • M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II. AKCE Int. J Graphs Comb. 17 (2020) 966–984. [Google Scholar]
  • M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in Structures of Domination in Graphs, edited by T.W. Haynes, S.T. Hedetniemi and M.A. Henning. Springer, Berlin/Heidelberg (2021) 273–307. [CrossRef] [Google Scholar]
  • T.W. Haynes, M.A. Henning and L. Volkmann, Graphs with large Italian domination number. Bull. Malays. Math. Sci. Soc. 43 (2020) 4273–4287. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. Henning and W.F. Klostermeyer, Italian domination in trees. Discrete Appl. Math. 217 (2017) 557–564. [Google Scholar]
  • J. Lyle, Regular graphs with large Italian domatic number. Commun. Comb. Optim. 7 (2022) 257–271. [MathSciNet] [Google Scholar]
  • B. Samadi, M. Alishahi, I. Masoumi and D.A. Mojdeh, Restrained Italian domination in graphs. RAIRO-Oper. Res. 55 (2021) 319–332. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S.M. Sheikholeslami and L. Volkmann, Total Italian domatic number of graphs. Comput. Sci. J. Moldova (to appear). [Google Scholar]
  • Z. Shao, M. Liang, C. Yinc, X. Xu, P. Pavlič and J. Žerovnik, On rainbow domination numbers of graphs. Inf. Sci. 254 (2014) 225–234. [CrossRef] [Google Scholar]
  • L. Volkmann, Remarks on the restrained Italian domination number in graphs. Commun. Comb. Optim. 8 (2023) 183–191. [MathSciNet] [Google Scholar]
  • L. Volkmann, Restrained double Italian domination in graphs. Commun. Comb. Optim. 8 (2023) 1–11. [MathSciNet] [Google Scholar]
  • C.X. Wang, Y. Yang, H.J. Wang and S.J. Xu, Roman {k}-domination in trees and complexity results for some classes of graphs. J. Comb. Optim. 42 (2021) 174–186. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.