Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1417 - 1441
DOI https://doi.org/10.1051/ro/2023056
Published online 21 June 2023
  • B.H. Ahn and J.H. Hyun, Single facility multi-class job scheduling. Comput. Oper. Res. 17 (1990) 265–272. [CrossRef] [Google Scholar]
  • M. Alimian, V. Ghezavati, R. Tavakkoli-Moghaddam and R. Ramezanian, Solving a parallel-line capacitated lot-sizing and scheduling problem with sequence-dependent setup time/cost and preventive maintenance by a rolling horizon method. Comput. Ind. Eng. 168 (2022) 108041. [CrossRef] [Google Scholar]
  • A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246 (2015) 345–378. [CrossRef] [Google Scholar]
  • A. Allahverdi, A survey of scheduling problems with uncertain interval/bounded processing/setup times. J. Project Manage. 7 (2022) 255–264. [CrossRef] [Google Scholar]
  • A. Allahverdi and H.M. Soroush, The significance of reducing setup times/setup costs. Eur. J. Oper. Res. 187 (2008) 978–984. [CrossRef] [Google Scholar]
  • A. Allahverdi, J.N.D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations. Omega 27 (1999) 219–239. [CrossRef] [Google Scholar]
  • A. Allahverdi, C.T. Ng, T.C.E. Cheng and M.Y. Kovalyov, A survey of scheduling problems with setup times or costs, Eur. J. Oper. Res. 187 (2008) 985–1032. [CrossRef] [Google Scholar]
  • A. Allahverdi, H. Aydilek and A. Aydilek, No-wait flowshop scheduling problem with separate setup times to minimize total tardiness subject to makespan. Appl. Math. Comput. 365 (2020) 124688. [Google Scholar]
  • K. Allali, S. Aqil and J. Belabid, Distributed no-wait flow shop problem with sequence dependent setup time: optimization of makespan and maximum tardiness. Simul. Modell. Pract. Theory 116 (2022) 10245. [Google Scholar]
  • K.P. Anagnostopoulos and G.K. Koulinas, A simulated annealing hyperheuristic for construction resource levelling. Const. Manage. Econ. 28 (2010) 163–175. [CrossRef] [Google Scholar]
  • M.P. Antonioli, C.D. Rodrigues and B. de Athayde Prata, Minimizing total tardiness for the order scheduling problem with sequence-dependent setup times using hybrid matheuristics. Int. J. Ind. Eng. Comput. 13 (2022) 223–236. [Google Scholar]
  • D.D. Bedworth and J.E. Bailey, Integrated Production Control Systems: Management, Analysis, Design, 2nd edition. New York, John Wiley & Sons (1987). [Google Scholar]
  • J.D. Blocher, D. Chhajed and M. Leung, Customer order scheduling in a general job shop environment. Dec. Sci. 29 (1998) 951–981. [CrossRef] [Google Scholar]
  • E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan and R. Qu, Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64 (2013) 1695–1724. [CrossRef] [Google Scholar]
  • T.C.E. Cheng, J.N.D. Gupta and G. Wang, A review of flowshop scheduling research with setup times. Prod. Oper. Manage. 9 (2000) 262–282. [Google Scholar]
  • P. Dileepan and T. Sen, Bicriterion static scheduling research for a single machine. Omega 16 (1988) 53–59. [CrossRef] [Google Scholar]
  • K.A. Dowsland, E. Soubeiga and E. Burke, A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation. Eur. J. Oper. Res. 179 (2007) 759–774. [CrossRef] [Google Scholar]
  • E. Erel and J.B. Ghosh, Customer order scheduling on a single machine with family setup times: complexity and algorithms. Appl. Math. Comput. 185 (2007) 11–18. [MathSciNet] [Google Scholar]
  • M.L. Fisher, A dual algorithm for the one-machine scheduling problem. Math. Program. 11 (1976) 229–251. [CrossRef] [Google Scholar]
  • J.M. Framinan and P. Perez-Gonzalez, Order scheduling with tardiness objective: improved approximate solutions. Eur. J. Oper. Res. 266 (2018) 840–850. [CrossRef] [Google Scholar]
  • J.M. Framinan, P. Perez-Gonzalez and V. Fernandez-Viagas, Deterministic assembly scheduling problems: a review and classification of concurrent-type scheduling models and solution procedures. Eur. J. Oper. Res. 273 (2019) 401–417. [CrossRef] [Google Scholar]
  • T.D. Fry, R.D. Armstrong and H. Lewis, A framework for single machine multiple objective sequencing research. Omega 17 (1989) 595–607. [CrossRef] [Google Scholar]
  • J. Gascón-Moreno, S. Salcedo-Sanz, B. Saavedra-Moreno, L. Carro-Calvo and A. Portilla-Figueras, An evolutionary-based hyper-heuristics approach for optimal construction of group method of data handling networks. Inf. Sci. 247 (2013) 94–108. [CrossRef] [Google Scholar]
  • J.N.D. Gupta, Optimal schedules for single facility with two job classes. Comput. Oper. Res. 11 (1984) 409–413. [CrossRef] [MathSciNet] [Google Scholar]
  • J.N.D. Gupta, Single facility scheduling with multiple job classes. Eur. J. Oper. Res. 8 (1988) 42–45. [CrossRef] [Google Scholar]
  • J.N.D. Gupta, J.C. Ho and J.A.A. van der Veen, Single machine hierarchical scheduling with customer orders and multiple job classes. Ann. Oper. Res. 70 (1997) 127–143. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Hollander, D.A. Wolfe and E. Chicken, Nonparametric Statistical Methods, 3rd edition. John Wiley & Sons, Hoboken, NJ, USA (2014). [Google Scholar]
  • S.Y. Hsu and C.H. Liu, Improving the delivery efficiency of the customer order scheduling problem in a job shop. Comput. Ind. Eng. 57 (2009) 856–866. [CrossRef] [Google Scholar]
  • A. Janiak, M.Y. Kovalyov and M.C. Portmann, Single machine group scheduling with resource dependent setup and processing times. Eur. J. Oper. Res. 162 (2005) 112–121. [CrossRef] [Google Scholar]
  • S.C. Kim and P.M. Bobrowski, Scheduling jobs with uncertain setup times and sequence dependency. Omega 25 (1997) 437–447. [CrossRef] [Google Scholar]
  • I.S. Lee, Minimizing total tardiness for the order scheduling problem. Int. J. Prod. Econ. 144 (2013) 128–134. [CrossRef] [Google Scholar]
  • J.Y.T. Leung, C.Y. Lee, C.W. Ng and G.H. Young, Preemptive multiprocessor order scheduling to minimize total weighted flowtime. Eur. J. Oper. Res. 190 (2008) 40–51. [CrossRef] [Google Scholar]
  • M.M. Liaee and H. Emmons, Scheduling families of jobs with setup times. Int. J. Prod. Econ. 51 (1997) 165–176. [CrossRef] [Google Scholar]
  • C.J. Liao, Tradeoff between setup times and carrying costs for finished items. Comput. Oper. Res. 20 (1993) 697–705. [CrossRef] [Google Scholar]
  • B.M.T. Lin and A.V. Kononov, Customer order scheduling to minimize the number of tardy jobs. Eur. J. Oper. Res. 183 (2007) 944–948. [CrossRef] [Google Scholar]
  • B.M.T. Lin, P.Y. Yin and Y.S. Liu, Sequence-dependent scheduling with order deliveries. Appl. Math. Comput. 222 (2013) 58–71. [MathSciNet] [Google Scholar]
  • C.H. Liu, Lot streaming for customer order scheduling problem in job shop environments. Int. J. Comput. Integr. Manuf. 22 (2009) 890–907. [CrossRef] [Google Scholar]
  • C.H. Liu, A coordinated scheduling system for customer orders scheduling problem in job shop environments. Expert Syst. App. 37 (2010) 7831–7837. [CrossRef] [Google Scholar]
  • A.J. Mason and E.J. Anderson, Minimizing flow times on a single machine with job classes and setup times. Nav. Res. Logistics 38 (1991) 333–350. [CrossRef] [Google Scholar]
  • C.L. Monma and C.N. Potts, On the complexity of scheduling with batch setup times. Oper. Res. 37 (1989) 798–804. [CrossRef] [MathSciNet] [Google Scholar]
  • D.C. Montgomery, Design and Analysis of Experiments, 5th edition. John Wiley & Sons Inc, New York, NY, USA (2001). [Google Scholar]
  • S. Muştu and T. Eren, The single machine scheduling problem with setup times under an extension of the general learning and forgetting effects. Optim. Lett. 15 (2021) 1327–1343. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Upper Saddle River, NJ, USA (2002). [Google Scholar]
  • C.N. Potts, Scheduling two job classes on a single machine. Comput. Oper. Res. 18 (1991) 411–415. [CrossRef] [Google Scholar]
  • C.N. Potts and L.N. van Wassenhove, Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity. J. Oper. Res. Soc. 43 (1992) 395–406. [Google Scholar]
  • H.N. Psaraftis, A dynamic programming approach for sequencing groups of identical jobs. Oper. Res. 28 (1980) 1347–1359. [CrossRef] [MathSciNet] [Google Scholar]
  • A.P. Rifai, S.T.W. Mara and A. Sudiarso, Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time. Expert Syst. App. 183 (2021) 115339. [CrossRef] [Google Scholar]
  • Z. Shi, L. Wang, P. Liu and L. Shi, Minimizing completion time for order scheduling: formulation and heuristic algorithm. IEEE Trans. Autom. Sci. Eng. 14 (2017) 1558–1569. [CrossRef] [Google Scholar]
  • Z. Shi, Z. Huang and L. Shi, Customer order scheduling on batch processing machines with incompatible job families. Int. J. Prod. Res. 56 (2018) 795–808. [CrossRef] [Google Scholar]
  • S.J. Shyu, B.M.T. Lin and P.Y. Yin, Application of ant colony optimization for no-wait flowshop scheduling problem to minimize the total completion time. Comput. Ind. Eng. 47 (2004) 181–193. [CrossRef] [Google Scholar]
  • A. Singh, On the intractability of preemptive single-machine job scheduling with release times, deadlines, and family setup times. Inf. Process. Lett. 179 (2023) 106305. [CrossRef] [Google Scholar]
  • T. Suma and R. Murugesan, Mathematical model and heuristic based subtask scheduling algorithm for order scheduling, in AIP Conference Proceedings 2095. Vol. 2095. AIP Publishing LLC (2019) 030026. [CrossRef] [Google Scholar]
  • E. Torabzadeh and M. Zandieh, Cloud theory-based simulated annealing approach for scheduling in the two-stage assembly flowshop. Adv. Eng. Softw. 41 (2010) 1238–1243. [CrossRef] [Google Scholar]
  • J.A.A. van der Veen and S. Zhang, Low-complexity algorithms for sequencing jobs with a fixed number of job-classes. Comput. Oper. Res. 23 (1996) 1059–1067. [CrossRef] [MathSciNet] [Google Scholar]
  • C.C. Wu, W.-H. Wu, W.-H. Wu, P.-H. Hsu, Y. Yin and J. Xu, A single-machine scheduling with a truncated linear deterioration and ready times. Inf. Sci. 256 (2014) 109–125. [CrossRef] [Google Scholar]
  • C.C. Wu, W.C. Lin, X. Zhang, I.H. Chung, T.H. Yang and K. Lai, Tardiness minimisation for a customer order scheduling problem with sum-of-processing-time based learning effect. J. Oper. Res. Soc. (2018a) 1476–9360. [Google Scholar]
  • C.C. Wu, S.C. Liu, T.Y. Lin, T.H. Yang, I.H. Chung and W.C. Lin, Bicriterion total flowtime and maximum tardiness minimization for an order scheduling problem. Comput. Ind. Eng. 117 (2018b) 152–163. [CrossRef] [Google Scholar]
  • C.-C. Wu, J.N.D. Gupta, S.R. Cheng, B.M.T. Lin, S.H. Yip and W.-C. Lin, Robust scheduling of a two-stage assembly shop with scenario-dependent processing times. Int. J. Prod. Res. 59 (2021) 5372–5387. [CrossRef] [Google Scholar]
  • X. Xu, Y. Ma, Z. Zhou and Y. Zhao, Customer order scheduling on unrelated parallel machines to minimize total completion time. IEEE Trans. Autom. Sci. Eng. 12 (2015) 244–257. [Google Scholar]
  • J. Xu, C.-C. Wu, Y. Yin, C.L. Zhao, Y.T. Chiou and W.-C. Lin, An order scheduling problem with position-based learning effect. Comput. Oper. Res. 74 (2016) 175–186. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Yang, Customer order scheduling in a two machine flowshop. Int. J. Manage. Sci. 17 (2011) 95–116. [Google Scholar]
  • W.H. Yang and C.J. Liao, Survey of scheduling research involving setup times. Int. J. Syst. Sci. 30 (1999) 143–155. [Google Scholar]
  • K.C. Ying, P. Pourhejazy, C.Y. Cheng and R.S. Syu, Supply chain-oriented permutation flowshop scheduling considering flexible assembly and setup times. Int. J. Prod. Res. 61 (2023) 258–281. [CrossRef] [Google Scholar]
  • Y. Zhao, X. Xu, H. Li and Y. Liu, Stochastic customer order scheduling with setup times to minimize expected cycle time. Int. J. Prod. Res. 56 (2018) 2684–2706. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Zhao, L. Leng and C. Zhang, A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery. Oper. Res. 21 (2021) 1299–1332. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.