Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1397 - 1416
Published online 21 June 2023
  • I. Ahmad, D. Singh and B.A. Dar, Optimality conditions in multi-objective programming problems with interval-valued objective functions. Control Cybern. 44 (2015) 19–45. [Google Scholar]
  • I. Ahmad, D. Singh and B.A. Dar, Optimality and duality in non-differentiable interval-valued multi-objective programming. Int. J. Math. Oper. Res. 11 (2017) 332–356. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ahmad, K. Kummari, V. Singh and A. Jayswal, Optimality and duality for nonsmooth minimax programming problems using convexifactor. Filomat 31 (2017) 4555–4570. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Belay, S. Acharya and R. Mishra, Application of multi-objective probabilistic fractional programming problem in production planning. Int. J. Oper. Res. 43 (2022) 150–167. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Selected topics in robust convex optimization. Math. Program. 112 (2008) 125–158. [Google Scholar]
  • A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, in Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, USA (2009). [Google Scholar]
  • D. Bertsimas, D.B. Brown and C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53 (2011) 464–501. [Google Scholar]
  • B.A. Dar, A. Jayswal and D. Singh, Optimality, duality and saddle point analysis for interval-valued nondifferentiable multi-objective fractional programming problems. Optimization 70 (2021) 1275–1305. [CrossRef] [MathSciNet] [Google Scholar]
  • I.P. Debnath and S.K. Gupta, Necessary and sufficient optimality conditions for fractional interval-valued optimization problems, in Decision Science in Action (Performance and Safety Management), Edited by K. Deep, M. Jain and S. Salhi. Springer, Singapore (2019) 155–173. [CrossRef] [Google Scholar]
  • I.P. Debnath and S.K. Gupta, The Karush–Kuhn–Tucker conditions for multiple objective fractional interval-valued optimization problems. RAIRO Oper. Res. 54 (2020) 1161–1188. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • V.F. Demyanov, Convexification and concavification of positively homogeneous functions by the same family of linear functions, in Report. Vol. 3. Universia di Pisa, Pisa (1994) 802. [Google Scholar]
  • J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions. J. Optim. Theory Appl. 113 (2002) 41–64. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization. optimization 53 (2004) 77–94. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Eriskin and M. Karatas, Applying robust optimization to the shelter location-allocation problem: a case study for Istanbul. Ann. Oper. Res. (2022). DOI: 10.1007/s10479-022-04627-1. [Google Scholar]
  • S. Effati and M. Pakdaman, Solving the interval-valued linear fractional programming problem. Am. J. Comput. Math. 2 (2012) 51–55. [CrossRef] [Google Scholar]
  • N. Gadhi, Necessary and sufficient optimality conditions for fractional multi-objective problems. Optimization 57 (2008) 527–537. [CrossRef] [MathSciNet] [Google Scholar]
  • R.R. Jaichander, I. Ahmad, K. Kummari and S. Al-Homidan, Robust nonsmooth interval-valued optimization problems involving uncertainty constraints. Mathematics 10 (2022) 1787. [CrossRef] [Google Scholar]
  • R.R. Jaichander, I. Ahmad and K. Kummari, Robust semi-infinite interval-valued optimization problem with uncertain inequality constraints. Korean J. Math. 30 (2022) 475–489. [MathSciNet] [Google Scholar]
  • A. Jayswal, K. Kummari and V. Singh, Duality for a class of nonsmooth multi-objective programming problems using convexificators. Filomat 31 (2017) 489–498. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar and D.T. Luc, Nonsmooth calculus, minimality and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999) 599–621. [CrossRef] [MathSciNet] [Google Scholar]
  • J.H. Lee and G.M. Lee, On optimality conditions and duality theorems for robust semi-infinite multi-objective optimization problems. Ann. Oper. Res. 269 (2018) 419–438. [CrossRef] [MathSciNet] [Google Scholar]
  • X.F. Li and J.Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization. J. Optim. Theory Appl. 131 (2006) 429–452. [CrossRef] [MathSciNet] [Google Scholar]
  • B.J. Rani and K. Kummari, Optimality conditions and saddle point criteria for fractional interval-valued optimization problem via convexificator. Southeast Asian Bull. Math. Accepted (2020). [Google Scholar]
  • B.J. Rani and K. Kummari, Duality for fractional interval-valued optimization problem via convexificator. Opsearch 60 (2023) 481–500. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Shafira, D. Chaerani and E. Lesmana, Robust optimization model for truss topology design problem using convex programming CVX. World Sci. News. 148 (2020) 27–45. [Google Scholar]
  • I.M. Stancu-Minasian, A ninth bibliography of fractional programming. Optimization 68 (2019) 2125–2169. [CrossRef] [Google Scholar]
  • J.F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design. Eng. Optim. 37 (2005) 399–409. [CrossRef] [MathSciNet] [Google Scholar]
  • H.C. Wu, On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008) 299–316. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Zhang, X. Zhang and L. Lan, Robust optimization-based dynamic power generation mix evolution under the carbon-neutral target. Resour. Conserv. Recycl. 178 (2022) 106103. [CrossRef] [Google Scholar]
  • H. Zhu and G.H. Huang, Dynamic stochastic fractional programming for sustainable management of electric power systems. Int. J. Electr. Power Energy Syst. 53 (2013) 553–563. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.