Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1239 - 1265
Published online 14 June 2023
  • G. Anusha, P.V. Ramana and R. Sarkar, Hybridizations of Archimedean copula and generalized MSM operators and their applications in interactive decision-making with q-rung probabilistic dual hesitant fuzzy environment. Decis. Mak. Appl. Manag. Eng. (2022). DOI: 10.31181/dmame0329102022a. [Google Scholar]
  • K.T. Atanassov, Interval valued intuitionistic fuzzy sets, in Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. Springer (1999) 139–177. [Google Scholar]
  • K.T. Atanassov, Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. Springer Verlag, Heidelberg (1999) 1–137. [Google Scholar]
  • M. Behzad, S.H. Zolfani, D. Pamucar and M. Behzad, A comparative assessment of solid waste management performance in the Nordic countries based on BWM-EDAS. J. Clean. Prod. 266 (2020) 122008. [CrossRef] [Google Scholar]
  • A. Biswas and B. Sarkar, Interval-valued Pythagorean fuzzy TODIM approach through point operator-based similarity measures for multicriteria group decision making. Kybernetes 48 (2019) 496–519. [CrossRef] [Google Scholar]
  • A. Biswas, K. Chaudhary, R. Singh, S. Tewari, S. Singh and S. Parida, Waste-Wise Cities: Best Practices in Municipal Solid Waste Management. Centre for Science and Environment and NITI Aayog, New Delhi (2021). [Google Scholar]
  • G. Buyukozkan and F. Gocer, A novel approach integrating AHP and COPRAS under Pythagorean fuzzy sets for digital supply chain partner selection. IEEE Trans. Eng. Manag. 68 (2019) 1486–1503. [Google Scholar]
  • A.P. Darko and D. Liang, Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method. Eng. Appl. Artif. Intell. 87 (2020) 103259. [CrossRef] [Google Scholar]
  • K. Debnath and S.K. Roy, Power partitioned neutral aggregation operators for T-spherical fuzzy sets: an application to H2 refuelling site selection. Expert Syst. Appl. 216 (2023) 119470. [CrossRef] [Google Scholar]
  • Y. Dorfeshan and S.M. Mousavi, A group TOPSIS-COPRAS methodology with Pythagorean fuzzy sets considering weights of experts for project critical path problem. J. Intell. Fuzzy Syst. 36 (2019) 1375–1387. [CrossRef] [Google Scholar]
  • M. Düğenci, A new distance measure for interval valued intuitionistic fuzzy sets and its application to group decision making problems with incomplete weights information. Appl. Soft Comput. 41 (2016) 120–134. [CrossRef] [Google Scholar]
  • C. Fu, D.-L. Xu and M. Xue, Determining attribute weights for multiple attribute decision analysis with discriminating power in belief distributions. Knowl. Based Syst. 143 (2018) 127–141. [CrossRef] [Google Scholar]
  • H. Gao, L. Ran, G. Wei, C. Wei and J. Wu, VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Publ. Health 17 (2020) 525. [CrossRef] [Google Scholar]
  • H. Garg, New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process. Neural. Comput. Appl. 33 (2021) 13937–13963. [CrossRef] [Google Scholar]
  • H. Garg, A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 36 (2021) 526–557. [CrossRef] [Google Scholar]
  • S. Ghosh, K.-H. Küfer, S.K. Roy and G.-W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment. Complex Intell. Syst. 8 (2022) 4115–4143. [CrossRef] [Google Scholar]
  • L.M. Goulart Coelho, L.C. Lange and H.M. Coelho, Multi-criteria decision making to support waste management: a critical review of current practices and methods. Waste Manag. Res. 35 (2017) 3–28. [CrossRef] [PubMed] [Google Scholar]
  • P. Gupta, C.-T. Lin, M.K. Mehlawat and N. Grover, A new method for intuitionistic fuzzy multiattribute decision making. IEEE Trans. Syst. Man Cybern. Syst. 46 (2015) 1167–1179. [Google Scholar]
  • P. Gupta, M.K. Mehlawat and N. Grover, Intuitionistic fuzzy multi-attribute group decision-making with an application to plant location selection based on a new extended VIKOR method. Inf. Sci. 370 (2016) 184–203. [CrossRef] [Google Scholar]
  • P. Gupta, M.K. Mehlawat and F. Ahemad, An MAGDM approach with q-rung orthopair trapezoidal fuzzy information for waste disposal site selection problem. Int. J. Intell. Syst. 36 (2021) 4524–4559. [CrossRef] [Google Scholar]
  • J. Jana and S.K. Roy, Two-person game with hesitant fuzzy payoff: an application in MADM. RAIRO-Oper. Res. 55 (2021) 3087–3105. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Jana and S.K. Roy, Linguistic Pythagorean hesitant fuzzy matrix game and its application in multi-criteria decision making. Appl. Intell. 53 (2023) 1–22. [CrossRef] [Google Scholar]
  • C. Jin, Y. Ran and G. Zhang, Interval-valued q-rung orthopair fuzzy FMEA application to improve risk evaluation process of tool changing manipulator. Appl. Soft Comput. 104 (2021) 107192. [CrossRef] [Google Scholar]
  • B.P. Joshi, A. Singh, P.K. Bhatt and K.S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties. J. Intell. Fuzzy Syst. 35 (2018) 5225–5230. [CrossRef] [Google Scholar]
  • Y. Ju, C. Luo, J. Ma, H. Gao, E.D. Santibanez Gonzalez and A. Wang, Some interval-valued q-rung orthopair weighted averaging operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 34 (2019) 2584–2606. [CrossRef] [Google Scholar]
  • S.A.R. Khan, M. Mathew, P. Dominic and M. Umar, Evaluation and selection strategy for green supply chain using interval-valued q-rung orthopair fuzzy combinative distance-based assessment. Environ. Dev. Sustain. 24 (2022) 10633–10665. [CrossRef] [Google Scholar]
  • R. Krishankumar, K.S. Ravichandran, S. Kar, F. Cavallaro, E.K. Zavadskas and A. Mardani, Scientific decision framework for evaluation of renewable energy sources under q-rung orthopair fuzzy set with partially known weight information. Sustainability 11 (2019) 4202. [CrossRef] [Google Scholar]
  • K. Kumar and S.-M. Chen, Group decision making based on q-rung orthopair fuzzy weighted averaging aggregation operator of q-rung orthopair fuzzy numbers. Inf. Sci. 598 (2022) 1–18. [CrossRef] [Google Scholar]
  • B. Limboo and P. Dutta, A q-rung orthopair basic probability assignment and its application in medical diagnosis. Decis. Mak. Appl. Manag. Eng. 5 (2022) 290–308. [CrossRef] [Google Scholar]
  • M.K. Mehlawat, P. Gupta and F. Ahemad, A nonlinear programming approach to solve MADM problem with triangular fuzzy preference and non-preference information. Optim. Eng. 22 (2021) 1091–1116. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Narang, M. Joshi and A. Pal, A hybrid fuzzy COPRAS-base-criterion method for multi-criteria decision making. Soft Comput. 25 (2021) 8391–8399. [CrossRef] [Google Scholar]
  • X. Peng and Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 31 (2016) 444–487. [CrossRef] [Google Scholar]
  • A. Pinar and F.E. Boran, A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. Int. J. Mach. Learn. Cybern. 11 (2020) 1–32. [Google Scholar]
  • V. Podvezko, The comparative analysis of MCDA methods SAW and COPRAS. Eng. Econ. 22 (2011) 134–146. [CrossRef] [Google Scholar]
  • K. Rahman, S. Abdullah, A. Ali and F. Amin, Interval-valued Pythagorean fuzzy Einstein hybrid weighted averaging aggregation operator and their application to group decision making. Complex Intell. Syst. 5 (2019) 41–52. [CrossRef] [Google Scholar]
  • K. Ramana, R. Krishankumar, M.S. Trzin, P. Amritha and D. Pamucar, An integrated variance-COPRAS approach with nonlinear fuzzy data for ranking barriers affecting sustainable operations. Sustainability 14 (2022) 1093. [CrossRef] [Google Scholar]
  • R.V. Rao, Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods. Vol. 2. Springer, London (2007). [Google Scholar]
  • R.A. Ribeiro, Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. Fuzzy Set. Syst. 78 (1996) 155–181. [CrossRef] [Google Scholar]
  • N.M. Stefano, N. Casarotto Filho, L.G.L. Vergara and R.U.G. da Rocha, COPRAS (Complex Proportional Assessment): state of the art research and its applications. IEEE Lat. Am. Trans. 13 (2015) 3899–3906. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, I. Mahdavi, M.M.S. Esfahani and G.-W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Manage. 102 (2020) 340–350. [Google Scholar]
  • E.B. Tirkolaee, A. Goli, S. Gütmen, G.-W. Weber and K. Szwedzka, A novel model for sustainable waste collection arc routing problem: Pareto-based algorithms. Ann. Oper. Res. (2022) 1–26. Doi: 10.1007/s10479-021-04486-2. [Google Scholar]
  • A.E. Torkayesh, H.R. Vandchali and E.B. Tirkolaee, Multi-objective optimization for healthcare waste management network design with sustainability perspective. Sustainability 13 (2021) 8279. [CrossRef] [Google Scholar]
  • G.-H. Tzeng and J.-J. Huang, Multiple Attribute Decision Making: Methods and Applications. CRC Press (2011). [CrossRef] [Google Scholar]
  • S.-P. Wan, Z. Jin and J.-Y. Dong, A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making. Knowl. Inf. Syst. 62 (2020) 751–785. [CrossRef] [Google Scholar]
  • B. Wan, Z. Hu, H. Garg, Y. Cheng and M. Han, An integrated group decision-making method for the evaluation of hypertension follow-up systems using interval-valued q-rung orthopair fuzzy sets. Complex Intell. Syst. (2023) 1–34. DOI: 10.1007/s40747-022-00953-w. [Google Scholar]
  • J. Wang and Y. Zhou, Multi-attribute group decision-making based on interval-valued q-rung orthopair fuzzy power generalized maclaurin symmetric mean operator and its application in online education platform performance evaluation. Information 12 (2021) 372. [CrossRef] [Google Scholar]
  • J. Wang, H. Gao, G. Wei and Y. Wei, Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry 11 (2019) 56. [CrossRef] [Google Scholar]
  • J. Wang, G. Wei, R. Wang, F.E. Alsaadi, T. Hayat, C. Wei, Y. Zhang and J. Wu, Some q-rung interval-valued orthopair fuzzy Maclaurin symmetric mean operators and their applications to multiple attribute group decision making. Int. J. Intell. Syst. 34 (2019) 2769–2806. [CrossRef] [Google Scholar]
  • G. Wei, H. Gao and Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33 (2018) 1426–1458. [CrossRef] [Google Scholar]
  • G. Wei, J. Wang, H. Gao, J. Wu and C. Wei, Approaches to multiple attribute decision making based on picture 2-tuple linguistic power Hamy mean aggregation operators. RAIRO-Oper. Res. 55 (2021) S435–S460. [CrossRef] [EDP Sciences] [Google Scholar]
  • Z. Xu, Uncertain Multi-attribute Decision Making: Methods and Applications. Springer (2015). [CrossRef] [Google Scholar]
  • Z. Xu and Q. Da, Projection method for uncertain multi-attribute decision making with preference information on alternatives. Int. J. Inf. Technol. Decis. Mak. 3 (2004) 429–434. [CrossRef] [Google Scholar]
  • Z. Xu and H. Hu, Projection models for intuitionistic fuzzy multiple attribute decision making. Int. J. Inf. Technol. Decis. Mak. 9 (2010) 267–280. [CrossRef] [Google Scholar]
  • R.R. Yager, Pythagorean fuzzy subsets, in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (2013) 57–61. DOI: 10.1109/IFSA-NAFIPS.2013.6608375. [Google Scholar]
  • R.R. Yager, Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25 (2016) 1222–1230. [Google Scholar]
  • R. Yousefpour, J.B. Jacobsen, B.J. Thorsen, H. Meilby, M. Hanewinkel and K. Oehler, A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann. For. Sci. 69 (2012) 1–15. [CrossRef] [Google Scholar]
  • C. Yue, Projection-based approach to group decision-making with hybrid information representations and application to software quality evaluation. Comput. Ind. Eng. 132 (2019) 98–113. [CrossRef] [Google Scholar]
  • Z. Yue, Deriving decision maker’s weights based on distance measure for interval-valued intuitionistic fuzzy group decision making. Expert Syst. Appl. 38 (2011) 11665–11670. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Cont. 8 (1965) 338–353. [Google Scholar]
  • S. Zeng, Y. Hu and X. Xie, Q-rung orthopair fuzzy weighted induced logarithmic distance measures and their application in multiple attribute decision making. Eng. Appl. Artif. Intell. 100 (2021) 104167. [CrossRef] [Google Scholar]
  • X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 31 (2016) 593–611. [CrossRef] [Google Scholar]
  • X. Zhang, F. Jin and P. Liu, A grey relational projection method for multi-attribute decision making based on intuitionistic trapezoidal fuzzy number. Appl. Math. Model. 37 (2013) 3467–3477. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Zhao, G. Wei, C. Wei and J. Wu, TODIM method for interval-valued Pythagorean fuzzy MAGDM based on cumulative prospect theory and its application to green supplier selection. Arab. J. Sci. Eng. 46 (2021) 1899–1910. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.