Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1559 - 1578
DOI https://doi.org/10.1051/ro/2023081
Published online 26 June 2023
  • P. Alfaro-Fernández, R. Ruiz, F. Pagnozzi and T. Stützle, Exploring automatic algorithm design for the hybrid flowshop problem, in 12th Metaheuristics International Conference. Barcelona (2017) 201–203. [Google Scholar]
  • J.C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6 (1994) 154–160. [Google Scholar]
  • D. Bergman, C.H. Cardonha, A.A. Cire and A.U. Raghunathan, On the minimum chordal completion polytope. Oper. Res. 67 (2019) 532–547. [MathSciNet] [Google Scholar]
  • A. Berry, J.-P. Bordat, P. Heggernes, G. Simonet and Y. Villanger, A wide-range algorithm for minimal triangulation from an arbitrary ordering. J. Algor. 58 (2006) 33–66. [CrossRef] [Google Scholar]
  • H.L. Bodlaender, T. Kloks, D. Kratsch and H. Müller, Treewidth and minimum fill-in on d-trapezoid graphs, in Graph Algorithms and Applications I. Edited by R. Tamassia and I.G. Tollis. World Scientific (2002) 139–161. [CrossRef] [Google Scholar]
  • R. Boisvert, R. Pozo, K. Remington, B. Miller and R. Lipman, Matrix market, Online reference at http://math.nist.gov/MatrixMarket/ [last access on March 21, 2023] (2007). [Google Scholar]
  • V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput. 31 (2001) 212–232. [CrossRef] [MathSciNet] [Google Scholar]
  • J.S. Brandão, T.F. Noronha, M.G.C. Resende and C.C. Ribeiro, A biased random-key genetic algorithm for single-round divisible load scheduling. Int. Trans. Oper. Res. 22 (2015) 823–839. [CrossRef] [MathSciNet] [Google Scholar]
  • J.S. Brandão, T.F. Noronha, M.G.C. Resende and C.C. Ribeiro, A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems. Int. Trans. Oper. Res. 24 (2017) 1061–1077. [CrossRef] [MathSciNet] [Google Scholar]
  • J.A. Brito, G. Semaan and A. Fadel, The effective BRKGA algorithm for the k-medoids clustering problem. RAIRO: OR 56 (2022) 3137–3153. [CrossRef] [EDP Sciences] [Google Scholar]
  • H.J. Broersma, E. Dahlhaus and T. Kloks, Algorithms for the treewidth and minimum fill-in of HHD-free graphs, in Graph-Theoretic Concepts in Computer Science. Vol. 1335 of Lecture Notes in Computer Science. Edited by R.H. Möhring. Springer (1997) 109–117. [Google Scholar]
  • P. Buneman, A characterisation of rigid circuit graphs. Discrete Math. 9 (1974) 205–212. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58 (1996) 171–176. [CrossRef] [Google Scholar]
  • M.-S. Chang, Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs, in Algorithms and Computation. Volume 1178 of Lecture Notes in Computer Science. Edited by T. Asano, Y. Igarashi, H. Nagamochi, S. Miyano and S. Suri. Springer (1996) 146–155. [CrossRef] [Google Scholar]
  • A.A. Chaves, L.A.N. Lorena, E.L.F. Senne and M.G.C. Resende, Hybrid method with CS and BRKGA applied to the minimization of tool switches problem. Comput. Oper. Res. 67 (2016) 174–183. [CrossRef] [MathSciNet] [Google Scholar]
  • F.R.K. Chung and D. Mumford, Chordal completions of planar graphs. J. Comb. Theory Ser. B 62 (1994) 96–106. [CrossRef] [Google Scholar]
  • H. Dell, C. Komusiewicz, N. Talmon and M. Weller, The PACE 2017 parameterized algorithms and computational experiments challenge: the second iteration, in 12th International Symposium on Parameterized and Exact Computation. Vol. 89 of Leibniz International Proceedings in Informatics. Edited by D. Lokshtanov and N. Nishimura. Dagstuhl (2018) 30:1–30:12 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Online reference at http://drops.dagstuhl.de/opus/volltexte/2018/8558 [last access on March 21, 2023]). [Google Scholar]
  • G.A. Dirac, On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25 (1961) 71–76. [CrossRef] [Google Scholar]
  • E.J.P. Douzery, C. Scornavacca, J. Romiguier, K. Belkhir, N. Galtier, F. Delsuc and V. Ranwez, OrthoMaM v8: a database of orthologous exons and coding sequences for comparative genomics in mammals. Mol. Biol. Evol. 31 (2014) 1923–1928. [CrossRef] [PubMed] [Google Scholar]
  • F.V. Fomin and Y. Villanger, Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42 (2013) 2197–2216. [CrossRef] [MathSciNet] [Google Scholar]
  • F.V. Fomin, D. Kratsch, I. Todinca and Y. Villanger, Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38 (2008) 1058–1079. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Fulkerson and O. Gross, Incidence matrices and interval graphs. Pac. J. Math. 15 (1965) 835–855. [CrossRef] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman and Co (1979). [Google Scholar]
  • J.F. Gonçalves and M.G.C. Resende, Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17 (2011) 487–525. [Google Scholar]
  • J.F. Gonçalves, M.G.C. Resende and R.F. Toso, An experimental comparison of biased and unbiased random-key genetic algorithms. Pesqui. Operacional 34 (2014) 143–164. [CrossRef] [Google Scholar]
  • R. Grone, C.R. Johnson, E.M. Sá and H. Wolkowicz, Positive definite completions of partial hermitian matrices. Linear Algebra Appl. 58 (1984) 109–124. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Gysel, K. Stevens and D. Gusfield, Reducing problems in unrooted tree compatibility to restricted triangulations of intersection graphs, in Algorithms in Bioinformatics. Vol. 7534 of Lecture Notes in Computer Science. Edited by B. Raphael and J. Tang. Springer (2012) 93–105. [CrossRef] [Google Scholar]
  • J. Hartmanis, Computers and intractability: a guide to the theory of NP-completeness (Michael R. Garey and David D. Johnson). SIAM Rev. 24 (1982) 90–91. [CrossRef] [Google Scholar]
  • P. Heggernes, Minimal triangulations of graphs: a survey. Discrete Math. 306 (2006) 297–317. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Prog. 129 (2011) 33–68. [CrossRef] [Google Scholar]
  • T. Kloks, D. Kratsch and C.K. Wong, Minimum fill-in on circle and circular-arc graphs. J. Algor. 28 (1998) 272–289. [CrossRef] [Google Scholar]
  • Y. Kobayashi and H. Tamaki, Track B: Minimum fill-in. Online reference at https://github.com/TCS-Meiji/PACE2017-TrackB, [last access on October 30, 2022] (2017). [Google Scholar]
  • S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Stat. Soc. Ser. B 50 (1988) 157–224. [Google Scholar]
  • M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari and T. Stützle, The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3 (2016) 43–58. [MathSciNet] [Google Scholar]
  • M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8 (1998) 3–30. [Google Scholar]
  • M. Mezzini and M. Moscarini, Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable Markov network. Theor. Comput. Sci. 411 (2010) 958–966. [CrossRef] [Google Scholar]
  • K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota, Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results. Math. Prog. 95 (2003) 303–327. [CrossRef] [Google Scholar]
  • A. Natanzon, R. Shamir and R. Sharan, A polynomial approximation algorithm for the minimum fill-in problem. SIAM J. Comput. 30 (2000) 1067–1079. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Pérez Cáceres, M. López-Ibáñez and T. Stützle, An analysis of parameters of irace, in Evolutionary Computation in Combinatorial Optimization. Vol. 8600 of Lecture Notes in Computer Science. Edited by C. Blum and D. Ochoa. Springer (2014) 37–48. [Google Scholar]
  • B.Q. Pinto, C.C. Ribeiro, I. Rosseti and A. Plastino, A biased random-key genetic algorithm for the maximum quasi-clique problem. Eur. J. Oper. Res. 271 (2018) 849–865. [CrossRef] [Google Scholar]
  • B.Q. Pinto, C.C. Ribeiro, J.A. Riveaux and I. Rosseti, A BRKGA-based matheuristic for the maximum quasi-clique problem with an exact local search strategy. RAIRO: OR 55 (2021) S741–S763. [CrossRef] [EDP Sciences] [Google Scholar]
  • V. Ranwez, F. Delsuc, S. Ranwez, K. Belkhir, M.-K. Tilak and E.J.P. Douzery, OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC Evol. Biol. 7 (2007) 241. [CrossRef] [Google Scholar]
  • E. Rollon and J. Larrosa, On mini-buckets and the min-fill elimination ordering, in Principles and Practice of Constraint Programming. Vol. 6876 of Lecture Notes in Computer Science. Edited by J. Lee. Springer (2011) 759–773. [Google Scholar]
  • R. Rossi and N. Ahmed, The network data repository with interactive graph analytics and visualization, in Twenty-Ninth AAAI conference on Artificial Intelligence (2015) 22–35. [Google Scholar]
  • S.E. Silva, Test instances for the chordal completion problem. Mendeley Data, V1. Online publication at https://data.mendeley.com/datasets/mf33kd592n [last access on March 21, 2023] (2022). [Google Scholar]
  • W. Spears and K.A. De Jong. On the virtues of parameterized uniform crossover, in Proceedings of the Fourth International Conference on Genetic Algorithms. Edited by R. Belew and L. Booker. San Mateo (1991) 230–236. [Google Scholar]
  • R.F. Toso and M.G.C. Resende, A c++ application programming interface for biased random-key genetic algorithms. Optimiz. Methods Soft. 30 (2015) 81–93. [CrossRef] [Google Scholar]
  • L. Vandenberghe and M.S. Andersen, Chordal graphs and semidefinite optimization. Found. Trends Optimiz. 1 (2015) 241–433. [CrossRef] [Google Scholar]
  • M. Yannakakis, Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2 (1981) 77–79. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.