Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1579 - 1597
Published online 30 June 2023
  • S. Banerjee and T.K. Roy, A constrained stochastic inventory model: fuzzy geometric programming and intuitionistic fuzzy geometric programming approach. Int. J. Comput. Sci. Math. 3 (2011) 189–213. [Google Scholar]
  • M. Borza, A.S. Rambely and M. Saraj, Solving linear fractional programming problems with interval coefficients in the objective function: a new approach. Appl. Math. Sci. 6 (2012) 3443–3452. [MathSciNet] [Google Scholar]
  • B.-Y. Cao and P.-H. Wang, Fuzzy geometric programming: past, present, and future, in Fuzzy Information and Engineering. Springer (2020). [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Naval Res. Logist. Q. 9 (1962) 181–186. [CrossRef] [Google Scholar]
  • V. Chinnadurai and S. Muthukumar, Solving the linear fractional programming problem in a fuzzy environment: numerical approach. Appl. Math. Modell. 40 (2016) 6148–6164. [CrossRef] [MathSciNet] [Google Scholar]
  • B.D. Craven, Fractional Programming. Heldermann Verlag, Berlin (1988). [Google Scholar]
  • P.P. Dey, S. Pramanik and B.C. Giri, TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming. J. Ind. Eng. Int. 10 (2014) 173–184. [CrossRef] [Google Scholar]
  • W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13 (1967) 492–498. [CrossRef] [Google Scholar]
  • W.S. Dorn, Linear Fractional Programming. International Business Machines Corporation, Thomas J. Watson Research Center (1962). [Google Scholar]
  • R.J. Duffin, Geometric programming-theory and application (1967). [Google Scholar]
  • R.J. Duffin and E.L. Peterson, Geometric programming with signomials. J. Opt. Theory Appl. 11 (1973) 3–35. [CrossRef] [Google Scholar]
  • B. Ghavami, M. Raji, R. Rasaizadi and M. Mashinchi, Process variation-aware gate sizing with fuzzy geometric programming. Comp. Electr. Eng. 78 (2019) 259–270. [CrossRef] [Google Scholar]
  • S. Islam and W.A. Mandal, Fuzzy Geometric Programming Techniques and Applications. Springer (2019). [CrossRef] [Google Scholar]
  • E. Jafarian, J. Razmi and M.F. Baki, A flexible programming approach based on intuitionistic fuzzy optimization and geometric programming for solving multi-objective nonlinear programming problems. Expert Syst. Appl. 93 (2018) 245–256. [CrossRef] [Google Scholar]
  • S.-T. Liu, Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46 (2007) 484–498. [Google Scholar]
  • S.-T. Liu, Fuzzy geometric programming approach to a fuzzy machining economics model. Int. J. Prod. Res. 42 (2004) 3253–3269. [CrossRef] [Google Scholar]
  • I. Maiti, T. Mandal, S. Pramanik and S.K. Das, Solving multi-objective linear fractional programming problem based on Stanojevic’s normalisation technique under fuzzy environment. Int. J. Oper. Res. 42 (2021) 543–564. [CrossRef] [Google Scholar]
  • S. Mishra and R.R. Ota, Signomial geometric programming approach to solve non-linear fractional programming problems. Int. J. Appl. Comp. Math. 8 (2022) 38. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Analysis of interval programming in different environments and its application to fixed-charge transportation problem. Disc. Math. Algo. Appl. 9 (2017) 1750040. [Google Scholar]
  • S. Midya, S.K. Roy and G.W. Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO: Oper. Res. 55 (2021) 1715–1741. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Midya, S.K. Roy and V.F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cyber. 12 (2021) 699–717. [CrossRef] [Google Scholar]
  • R.E. Moore, Interval Analysis. Prentice-Hall Englewood Cliffs (1966). [Google Scholar]
  • S.H. Nasseri and Z. Alizadeh, Optimized solution of a two-bar truss nonlinear problem using fuzzy geometric programming. J. Nonlin. Anal. Appl. 2014 (2014) 1–9. [Google Scholar]
  • S. Nayak and A.K. Ojha, An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem. Soft Comput. 23 (2019) 5605–5618. [CrossRef] [Google Scholar]
  • R.R. Ota and A.K. Ojha, A comparative study on optimization techniques for solving multi-objective geometric programming problems. Appl. Math. Sci. 9 (2015) 1077–1085. [Google Scholar]
  • P. Pandey and A.P. Punnen, A simplex algorithm for piecewise-linear fractional programming problems. Eur. J. Oper. Res. 178 (2007) 343–358. [CrossRef] [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncert. Fuzz. Knowl. Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • S.K. Roy, S. Midya and G.W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neur. Comput. Appl. 31 (2019) 8593–8613. [CrossRef] [Google Scholar]
  • J.K. Sharma, A.K. Gupta and M.P. Gupta, Extension of simplex technique for solving fractional programming problems. Indian J. Pure Appl. Math. 11 (1980) 961–968. [MathSciNet] [Google Scholar]
  • I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers (1997). [CrossRef] [Google Scholar]
  • K. Swarup, Linear fractional functionals programming. Oper. Res. 13 (1965) 1029–1036. [CrossRef] [Google Scholar]
  • C. Veeramani and M. Sumathi, A new method for solving fuzzy linear fractional programming problems. J. Intell. Fuzzy Syst. 31 (2016) 1831–1843. [CrossRef] [Google Scholar]
  • J. Von Neumann, Uber ein okonomsiches gleichungssystem und eine verallgemeinering des browerschen fixpunktsatzes. Erge. Math. Kolloq. 8 (1937) 73–83. [Google Scholar]
  • H.M. Wagner and J.S. Yuan, Algorithmic equivalence in linear fractional programming. Manag. Sci. 14 (1968) 301–306. [CrossRef] [Google Scholar]
  • J.-H. Yang and B.-Y. Cao, Fuzzy geometric programming and its application. Fuzzy Inform. Eng. 2 (2010) 101–112. [CrossRef] [Google Scholar]
  • G. Yang, X. Li, L. Huo and Q. Liu, A solving approach for fuzzy multi-objective linear fractional programming and application to an agricultural planting structure optimization problem. Chaos Solit. Fract. 141 (2020) 110352. [CrossRef] [Google Scholar]
  • F. Zahmatkesh and B.-Y. Cao, On the solution of fractional geometric programming problem with fuzzy coefficients, in 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE (2015). [Google Scholar]
  • H.-J. Zimmermann, Fuzzy Set Theory and Its Applications. Springer Science & Business Media (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.