Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
|
|
---|---|---|
Page(s) | 1343 - 1351 | |
DOI | https://doi.org/10.1051/ro/2023069 | |
Published online | 14 June 2023 |
- A. Brouwer and W. Haemers, Eigenvalues and perfect matchings. Linear Algebra App. 395 (2005) 155–162. [CrossRef] [Google Scholar]
- O. Suil, Spectral radius and matchings in graphs. Linear Algebra App. 614 (2021) 316–324. [CrossRef] [Google Scholar]
- W. Liu, M. Liu and L. Feng, Spectral conditions for graphs to be ß-deficient involving minimum degree. Linear Multilinear Algebra 66 (2018) 792–802. [CrossRef] [MathSciNet] [Google Scholar]
- C. Liu and J. Li, Distance signless Laplacian spectral radius and perfect matchings in graphs and bipartite graphs. Preprint arXiv:2104.01288v1 [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Some sufficient conditions for path-factor uniform graphs. Aequationes Math. 97 (2023) 489–500. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in claw-free graphs. Discrete Math. 243 (2002) 195–200. [Google Scholar]
- S. Zhou, Degree conditions and path factors with inclusion or exclusion properties. Bull. Math. Soc. Sci. Math. Roumanie 66 (2023) 3–14. [Google Scholar]
- S. Zhou and Q. Bian, The existence of path-factor uniform graphs with large connectivity. RAIRO: Oper. Res. 56 (2022) 2919–2927. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- H. Liu, Binding number for path-factor uniform graphs. Proc. Roman. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 25–32. [Google Scholar]
- S. Wang and W. Zhang, Independence number, minimum degree and path-factors in graphs. Proc. Roman. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 229–234. [Google Scholar]
- J. Wu, Path-factor critical covered graphs and path-factor uniform graphs. RAIRO: Oper. Res. 56 (2022) 4317–4325. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- W. Gao, Y. Chen and Y. Wang, Network vulnerability parameter and results on two surfaces. Int. J. Intell. Syst. 36 (2021) 4392–4414. [CrossRef] [Google Scholar]
- S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory 43 (2023) 233–244. [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106 (2022) 195–202. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Isolated toughness for path factors in networks. RAIRO: Oper. Res. 56 (2022) 2613–2619. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. 39 (2023) 232–238. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cui and M. Kano, Some results on odd factors of graphs. J. Graph Theory 12 (1988) 327–333. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lu, Z. Wu and X. Yang, Eigenvalues and [1, n]-odd factors. Linear Algebra App. 433 (2010) 750–757. [CrossRef] [Google Scholar]
- S. Kim, O. Suil, J. Park and H. Ree, An odd [1, b]-factor in regular graphs from eigenvalues. Discrete Math. 343 (2020) 111906. [CrossRef] [MathSciNet] [Google Scholar]
- D. Fan, H. Lin and H. Lu, Spectral radius and [a, b]-factors in graphs. Discrete Math. 345 (2022) 112892. [CrossRef] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO: Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Prob. Inf. Transm. 56 (2020) 270–277. [Google Scholar]
- M. Axenovich and J. Rollin, Brooks type results for conflict-free colorings and {a, b}-factors in graphs. Discrete Math. 338 (2015) 2295–2301. [CrossRef] [MathSciNet] [Google Scholar]
- N. Haghparast and K. Ozeki, 2-Factors of cubic bipartite graphs. Discrete Math. 344 (2021) 112357. [CrossRef] [Google Scholar]
- X. Lv, A degree condition for graphs being fractional (a, b, k)-critical covered. Filomat 37 (2023) 3315–3320. [MathSciNet] [Google Scholar]
- S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. 323 (2022) 343–348. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A note of generalization of fractional ID-factor-critical graphs. Fundam. Inf. 187 (2022) 61–69. [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou, J. Wu and H. Liu, Independence number and connectivity for fractional (a, b, k)-critical covered graphs. RAIRO: Oper. Res. 56 (2022) 2535–2542. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- H. Minc, Nonnegative Matrices. John Wiley & Sons, New York (1988). [Google Scholar]
- R. Xing, B. Zhou and J. Li, On the distance signless Laplacian spectral radius of graphs. Linear Multilinear Algebra 62 (2014) 1377–1387. [CrossRef] [MathSciNet] [Google Scholar]
- A. Brouwer and W. Haemers, Spectra of Graphs – Monograph. Springer (2011). [Google Scholar]
- L. You, M. Yang, W. So and W. Xi, On the spectrum of an equitable quotient matrix and its application. Linear Algebra App. 577 (2019) 21–40. [CrossRef] [MathSciNet] [Google Scholar]
- A. Amahashi, On factors with all degrees odd. Graphs Comb. 1 (1985) 111–114. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.