Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 2113 - 2129 | |
DOI | https://doi.org/10.1051/ro/2023104 | |
Published online | 08 August 2023 |
- C. Adiga and B.R. Rakshith, On spectra of variants of the corona of two graphs and some new equienergetic graphs. Discuss. Math. Graph Theory 36 (2016) 127–140. [CrossRef] [MathSciNet] [Google Scholar]
- C. Adiga, R. Malpashree and B.R. Rakshith, Seidel spectrum of corona and neighborhood corona of two graphs. Indian J. Math. 59 (2017) 21–34. [MathSciNet] [Google Scholar]
- S. Akbari, M. Einollahzadeh, M.M. Karkhaneei and M.A. Nematollahi, Proof of a conjecture on the seidel energy of graphs, Eur. J. Comb. 86 (2020) 103078. [CrossRef] [Google Scholar]
- S. Akbari, J. Askari and K.C. Das, Some properties of eigenvalues of the Seidel matrix. Linear Multilinear Algebra 70 (2022) 2150–2161. [CrossRef] [MathSciNet] [Google Scholar]
- K.T. Balińska, D. Cvetković, Z. Radosavljević, S.K. Simić and D. Stevanović, A survey on integral graphs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002) 42–65. [MathSciNet] [Google Scholar]
- S. Barik and G. Sahoo, On the Laplacian spectra of some variants of corona. Linear Algebra Appl. 512 (2017) 32–47. [CrossRef] [MathSciNet] [Google Scholar]
- S. Barik, S. Pati and B.K. Sarma, The spectrum of the corona of two graphs. SIAM. J. Discrete Math. 24 (2007) 47–56. [CrossRef] [MathSciNet] [Google Scholar]
- I. Balla, F. Dräxler, P. Keevash and B. Sudakov, Equiangular lines and spherical codes in Euclidean space. Invent. Math. 211 (2018) 179–212. [CrossRef] [MathSciNet] [Google Scholar]
- S. Barik, D. Kalita, S. Pati and G. Sahoo, Spectra of graphs resulting from various graph operations and products: a survey. Spec. Matrices 6 (2018) 323–342. [CrossRef] [MathSciNet] [Google Scholar]
- A. Berman, N. Shaked-Monderer, R. Singh and X.-D. Zhang, Complete multipartite graphs that are determined, up to switching, by their Seidel spectrum. Linear Algebra Appl. 564 (2019) 58–71. [CrossRef] [MathSciNet] [Google Scholar]
- A.E. Brouwer and W.H. Haemers, Spectra of Graphs. Springer, New York (2012). [CrossRef] [Google Scholar]
- B. Bukh, Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 30 (2016) 549–554. [CrossRef] [MathSciNet] [Google Scholar]
- M. Christandl, N. Datta, A. Ekert and A.J. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92 (2004) 187902. [CrossRef] [PubMed] [Google Scholar]
- S.-Y. Cui and G.-X. Tian, The spectrum and the signless Laplacian spectrum of coronae. Linear Algebra Appl. 437 (2012) 1692–1703. [CrossRef] [MathSciNet] [Google Scholar]
- S.-Y. Cui and G.-X. Tian, The spectra and the signless Laplacian spectra of graphs with pockets. Appl. Math. Comput. 315 (2017) 363–371. [MathSciNet] [Google Scholar]
- D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs Theory and Applications, 3rd edition. Johann Ambrosius Barth Verlag (1995). [Google Scholar]
- M.A.A. de Freitas, N.M.M. Abreu, R.R. Del-Vecchio and S. Jurkiewicz, Infinite families of Q-integral graphs. Linear Algebra Appl. 432 (2010) 2352–2360. [CrossRef] [MathSciNet] [Google Scholar]
- E. Ghorbani, On eigenvalues of Seidel matrices and Haemers’ conjecture. Des. Codes Cryptogr. 84 (2017) 189–195. [CrossRef] [MathSciNet] [Google Scholar]
- G.R.W. Greaves, Equiangular line systems and switching classes containing regular graphs. Linear Algebra Appl. 536 (2018) 31–51. [CrossRef] [MathSciNet] [Google Scholar]
- G.R.W. Greaves and P. Yatsyna, On equiangular lines in 17 dimensions and the characteristic polynomial of a Seidel matrix. Math. Comp. 88 (2019) 3041–3061. [CrossRef] [MathSciNet] [Google Scholar]
- G.R.W. Greaves, J.H. Koolen, A. Munemasa and F. Szöllősi, Equiangular lines in Euclidean spaces. J. Comb. Theory Ser. A 138 (2016) 208–235. [CrossRef] [Google Scholar]
- W.H. Haemers, Seidel switching and graph energy. MATCH Commun. Math. Comput. Chem. 68 (2012) 653–659. [MathSciNet] [Google Scholar]
- W.H. Haemers and M.R. Oboudi, Universal spectra of the disjoint union of regular graphs. Linear Algebra Appl. 606 (2020) 244–248. [CrossRef] [MathSciNet] [Google Scholar]
- F. Harary and A.J. Schwenk, Which graphs have integral spectra? Graphs and combinatorics. Lecture Notes in Math. Vol. 406, Springer, Berlin (1974). [Google Scholar]
- R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press (1991). [CrossRef] [Google Scholar]
- Y. Hou and W.-C. Shiu, The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra 20 (2010) 586–594. [MathSciNet] [Google Scholar]
- A. Iranmanesh and J.A. Farsangi, Upper and lower bounds for the power of eigenvalues in Seidel matrix. J. Appl. Math. Inf. 33 (2015) 627–633. [Google Scholar]
- S. Kirkland, Constructably Laplacian integral graphs. Linear Algebra Appl. 423 (2007) 3–21. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kirklandand S. Severini, Spin systems dynamics and fault detection in threshold networks. Phys. Rev. A 83 (2011) 012310. [CrossRef] [Google Scholar]
- M. Lepović, On the Seidel eigenvectors of a graph. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14 (2003) 4–10. [MathSciNet] [Google Scholar]
- X. Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae. Linear Algebra Appl. 438 (2013) 3547–3559. [CrossRef] [MathSciNet] [Google Scholar]
- P. Lu and Y. Miao, The generalized characteristic polynomial of the subdivision-vertex and subdivision-edge coronae. ARS Comb. 129 (2016) 341–356. [Google Scholar]
- S.M. Lv, L. Wei and H.X. Zhao, On the Seidel integral complete multipartite graphs. Acta Math. Appl. Sin. Engl. Ser. 28 (2012) 705–710. [CrossRef] [MathSciNet] [Google Scholar]
- S. Mandal, R. Mehatari and K.C. Das, On the spectrum and energy of Seidel matrix for chain graphs. Preprint arXiv:2205.00310 (2022). [Google Scholar]
- M.R. Oboudi, Energy and Seidel energy of graphs. MATCH Commun. Math. Comput. Chem. 75 (2016) 291–303. [MathSciNet] [Google Scholar]
- M. Pokorný, QLS-integrality of complete r-partite graphs. Filomat 29 (2015) 1043–1051. [CrossRef] [MathSciNet] [Google Scholar]
- M. Pokorný, P. Híc and D. Stevanović, Remarks on Q-integral complete multipartite graphs. Linear Algebra Appl. 439 (2013) 2029–2037. [CrossRef] [MathSciNet] [Google Scholar]
- H.S. Ramane, I. Gutman and M.M. Gundloor, Seidel energy of iterated line graphs of regular graphs. Kragujevac J. Math. 39 (2015) 7–12. [CrossRef] [MathSciNet] [Google Scholar]
- D. Rizzolo, Determinants of Seidel matrices and a conjecture of Ghorbani. Linear Algebra Appl. 579 (2019) 51–54. [CrossRef] [MathSciNet] [Google Scholar]
- F. Szöllősi and P.R.J. Östergård, Enumeration of Seidel matrices. Eur. J. Comb. 69 (2018) 169–184. [CrossRef] [Google Scholar]
- G.-X. Tian, J.-X. He and S.-Y. Cui, On the Laplacian spectra of some double join operations of graphs. Bull. Malays. Math. Sci. Soc. 42 (2019) 1555–1566. [CrossRef] [MathSciNet] [Google Scholar]
- G.-X. Tian, Y. Li and S.-Y. Cui, The change of Seidel energy of tripartite Turán graph due to edge deletion. Linear Multilinear Algebra 70 (2022) 4597–4614. [CrossRef] [MathSciNet] [Google Scholar]
- G.-X. Tian, P.-K. Yu and S.-Y. Cui, The signless Laplacian state transfer in coronas. Linear Multilinear Algebra 69 (2021) 278–295. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. van Lint and J.J. Seidel, Equilateral point sets in elliptic geometry. Indag. Math. 28 (1966) 335–348. [CrossRef] [Google Scholar]
- L. Wang, G. Zhao and K. Li, Seidel integral complete r-partite graphs. Graphs Comb. 30 (2014) 479–493. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.