Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 2151 - 2176
DOI https://doi.org/10.1051/ro/2023077
Published online 08 August 2023
  • G. Bayram and Ö. Yurtsever, Efficiency evaluation of european countries in terms of COVID-19. Int. J. Adv. Eng. Pür’e Sci. 33 (2021) 366–375. [Google Scholar]
  • Wikipedia, List of Outbreaks-Wikipedia. Accessed: October 25, 2021. https://tr.wikipedia.org/wiki/Salginlar_listesi. [Google Scholar]
  • WHO, WHO Coronavirus (COVID-19) Dashboard, Accessed: October 25, 2021. https://covid19.who.int/. [Google Scholar]
  • J. Jouzdani and H. Shirouyehzad, Fight against COVID-19: what can be done in the case of Iran? J. Appl. Res. Ind. Eng. 7 (2020) 1–12. [Google Scholar]
  • Z.O. Saygin, Analysis of OECD countries in terms of health indicators with an integrated multi-criteria decision-making approach. Master’s thesis. Pamukkale University Institute of Social Sciences (2019). [Google Scholar]
  • D. Şahin, Turkey’s place among European Union countries in terms of health indicators: a statistical analysis. ÇankırıKaratekin Univ. J. Soc. Sci. Inst. 8 (2017) 55–77. [Google Scholar]
  • J.C. Gómez-Gallego, M. Gómez-Gallego, J.F. García-García and U. Faura-Martinez, Evaluation of the efficiency of European health systems using fuzzy data envelopment analysis. In Healthcare. 9 (2021) 1270. [CrossRef] [Google Scholar]
  • D. Diakoulaki, G. Mavrotas and L. Papayannakis, Determining objective weights in multiple criteria problems: the CRITIC method. Comput. Oper. Res. 22 (1995) 763–770. [CrossRef] [Google Scholar]
  • V. Keršuliene, E.K. Zavadskas and Z. Turskis, Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manage. 11 (2010) 243–258. [CrossRef] [Google Scholar]
  • H. Zaher, H.A. Khalifa and S. Mohamed, On rough interval multi criteria decision making. Int. J. Sci. Technol. Res. 7 (2018) 44–54. [Google Scholar]
  • M.L. Peters and S. Zelewski, Efficiency analysis under consideration of satisficing levels for output quantities, in Proceedings of the 17th Annual Conference of the Production and Operations Management Society (POMS). Vol. 28 (2006). [Google Scholar]
  • C. Parkan, Operational competitiveness ratings of production units. Manage. Decis. Econ. 15 (1994) 201–221. [CrossRef] [Google Scholar]
  • F. Arslan, Evaluation of the efficiency of hospitals by using balanced scorecard based fuzzy data envelopment analysis. Master’s thesis, Sakarya University (2019). [Google Scholar]
  • A. Ozbek, Efficiency analysis in charitable organizations with multi-criteria decision making methods. Anadolu Univ. J. Soc. Sci. 18 (2017) 99–114. [Google Scholar]
  • B. Bairagi, B. Dey, B. Sarkar and S.K. Sanyal, A De Novo multi-approaches multi-criteria decision making technique with an application in performance evaluation of material handling device. Comput. Ind. Eng. 87 (2015) 267–282. [CrossRef] [Google Scholar]
  • OECD, OECD Data. Accessed: October 25, 2021. https://data.oecd.org/. [Google Scholar]
  • M. Ferrara and L. Guerrini, More on the green solow model with logistic population change. WSEAS Trans. Math. 8 (2009) 41–50. [MathSciNet] [Google Scholar]
  • A. Raza, A. Ahmadian, M. Rafiq, S. Salahshour and M. Ferrara, An analysis of a nonlinear susceptible-exposed-infected-quarantine- recovered pandemic model of a novel coronavirus with delay effect. Results Phys. 21 (2021) 1–7. [Google Scholar]
  • M. Zamir, K. Shah, F. Nadeem, M.Y. Bajuri, A. Ahmadian, S. Salahshour and M. Ferrara, Threshold conditions for global stability of disease free state of COVID-19. Results Phys. 21 (2021) 1–12. [Google Scholar]
  • V. Gupta, N. Jain, P. Katariya, A. Kumar, S. Mohan, A. Ahmadian and M. Ferrara, An emotion care model using multimodal textual analysis on COVID-19. Chaos Solitons Fractals 144 (2021) 1–9. [Google Scholar]
  • S. Salahshour, A. Ahmadian, B.A. Pansera and M. Ferrara, Uncertain inverse problem for fractional dynamical systems using perturbed collage theorem. Commun. Nonlinear Sci. Numer. Simul. 94 (2021) 1–16. [Google Scholar]
  • N. Aydın and G. Yurdakul, Assessing countries’ performances against COVID-19 via WSIDEA and machine learning algorithms. Appl. Soft Comput. 97 (2020) 1–18. [Google Scholar]
  • A. Yiğit, The performance of OECD countries in combating with COVID-19 pandemics: a crosssectional study. J. Curr. Res. Soc. Sci. 10 (2020) 399–416. [Google Scholar]
  • A. Maqbool and N.Z. Khan, Analyzing barriers for implementation of public health and social measures to prevent the transmission of COVID-19 disease using DEMATEL method. Diabetes Metab. Syndrome Clin. Res. Rev. 14 (2020) 887–892. [CrossRef] [Google Scholar]
  • S. Maity, N. Ghosh and U.R. Barlaskar, Interstate disparities in the performances in combatting COVID-19 in India: efficiency estimates across states. BMC Publ. Health 20 (2020) 1–12. [CrossRef] [Google Scholar]
  • M. Sayan, F.S. Yildirim, T. Sanlidag, B. Uzun, D.U. Ozsahin and I. Ozsahin, Capacity evaluation of diagnostic tests for COVID- 19 using multicriteria decision-making techniques. Comput. Math. Methods Med. (2020) 1–8. DOI: 10.1155/2020/1560250. [CrossRef] [Google Scholar]
  • I.M. Hezam, M.K. Nayeem, A. Foul and A.F. Alrasheedi, COVID-19 vaccine: a neutrosophic MCDM approach for determining the priority groups. Results Phys. 20 (2021) 1–12. [Google Scholar]
  • A.C. Boyaci, Which OECD countries are advantageous in fight against COVID-19? Erciyes Univ. Inst. Sci. J. Sci. 37 (2021) 137–148. [Google Scholar]
  • N. Ghorui, A. Ghosh, S.P. Mondal, M.Y. Bajuri, A. Ahmadian, S. Salahshour and M. Ferrara, Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results Phys. 21 (2021) 1–8. [Google Scholar]
  • T. Arsu, Evaluation of the countries’ fight against the COVID-19 Pandemic with multi-criteria decision-making methods. Bitlis Eren Univ. Faculty Econ. Admin. Sci. J. Acad. Projection 6 (2021) 128–140. [Google Scholar]
  • N. Md Hamzah, M.M. Yu and K.F. See, Assessing the efficiency of Malaysia health system in COVID-19 prevention and treatment response. Health Care Manage. Sci. 24 (2021) 273–285. [CrossRef] [PubMed] [Google Scholar]
  • A. Ergülen, B. Bolayır, Z. Ünal and I. Harmankaya, Evaluation of Turkey’s effectiveness in the COVID-19 process with data envelopment analysis. Gümüşhane Univ. Inst. Soc. Sci. Electron. J. 11 (2020) 275–286. [Google Scholar]
  • H. Shirouyehzad, J. Jouzdani and M.K. Karimvand, Fight against COVID-19: a global efficiency evaluation based on contagion control and medical treatment. J. Appl. Res. Ind. Eng. 7 (2020) 109–120. [Google Scholar]
  • M.C. Breitenbach, V. Ngobeni and G.C. Aye, Effıciency of healthcare systems in the first wave of COVID-19: a technical efficiency analysis. Econ. Stud. 30 (2021) 1–25. [Google Scholar]
  • F. Selamzade and Y. Özdemir, Evaluation of the efficiency of OECD countries against COVID-19 by DEA. Electron. Turkish Stud. 15 (2020) 977–991. [Google Scholar]
  • E. Mariano, B. Torres, M. Almeida, D. Ferraz, D. Rebelatto and J.C.S. de Mello, Brazilian states in the context of COVID-19 pandemic: an index proposition using Network Data Envelopment Analysis. IEEE Lat. Am. Trans. 19 (2021) 917–924. [CrossRef] [Google Scholar]
  • G. Bayram and Ö. Yurtsever, Efficiency evaluation of European countries in terms of COVID-19. Int. J. Adv. Eng. Pür’e Sci. 33 (2021) 366–375. [Google Scholar]
  • F. Baş Kaman and A. Yucel, A study on the efficiency of health workers in 9 OECD countries most affected by COVID-19. J. Appl. Soc. Sci. Fine Arts 3 (2021) 14–25. [Google Scholar]
  • E.A. Bağrıçak, Evaluation of Turkey’s effectiveness against OECD and EU member states in combating COVID-19. J. Erciyes Univ. Faculty Econ. Admin. Sci. 60 (2021) 215–233. [Google Scholar]
  • A. Sel, Measuring the efficiency of health system developments in the COVID-19 pandemic: a study on the G-20. Kirklareli Univ. Faculty Econ. Admin. Sci. J. 10 (2021) 181–202. [Google Scholar]
  • A. Taherinezhad and A. Alinezhad, Nations performance evaluation during SARS-CoV-2 outbreak handling via data envelopment analysis and machine learning methods. Int. J. Syst. Sci. Oper. Logistics (2022) 1–18. [Google Scholar]
  • K.K. Mohanta, D.S. Sharanappa and A. Aggarwal, Efficiency analysis in the management of COVID-19 pandemic in India based on data envelopment analysis. Curr. Res. Behav. Sci. 2 (2021) 2–8. [Google Scholar]
  • A. Sotoudeh-Anvari, The applications of MCDM methods in COVID-19 pandemic: a state of the art review. Appl. Soft Comput. 126 (2022) 2–40. [Google Scholar]
  • J. Pan, R. Fan, H. Zhang, Y. Gao, Z. Shu and Z. Chen, Investigating the effectiveness of Government Public Health Systems against COVID-19 by Hybrid MCDM approaches. Mathematics 10 (2022) 1–20. [Google Scholar]
  • S. Ahmad, S. Masood, N.Z. Khan, İ.A. Badruddin, A. Ahmadian, Z.A. Khan and A.H. Khan, Analysing the impact of COVID-19 pandemic on the psychological health of people using fuzzy MCDM methods. Oper. Res. Perspect. 10 (2023) 1–8. [Google Scholar]
  • H. Aljaghoub, S. Alasad, A. Alashkar, M. AlMallahi, R. Hasane, K. Obaideen and A.H. Alami, Comparative analysis of various oxygen production techniques using multi-criteria decision-making methods. Int. J. Thermofluids 17 (2023) 1–9. [Google Scholar]
  • C. Çetinkaya, M. Erbaş, M. Kabak and E. Özceylan, A mass vaccination site selection problem: an application of GIS and entropy-based MAUT approach. Soc. Econ. Plann. Sci. 85 (2023) 101376. [CrossRef] [Google Scholar]
  • A. Liu, Z. Li, W.L. Shang and W. Ochieng, Performance evaluation model of transportation infrastructure: perspective of COVID-19. Transp. Res. Part A Policy Pract. 170 (2023) 1–37. [Google Scholar]
  • E.D.U. Akçakaya and N. Ömürbek, Clustering of OECD countries in terms of democracy quality indicators. OPUS Int. J. Soc. Stud. 18 (2021) 1365–1393. [Google Scholar]
  • D.Y. Chang, Kapsam analizi yönteminin bulanık AHP üzerine uygulamaları. Avrupa yöneylem araştırmasıdergisi 95 (1996) 649–655. [Google Scholar]
  • C. Kao and S.T. Liu, Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 113 (2000) 427–437. [Google Scholar]
  • Y.M. Wang and C. Parkan, A minimax disparity approach for obtaining OWA operator weights. Inf. Sci. 175 (2005) 20–29. [CrossRef] [Google Scholar]
  • Z. Göktolga and A. Artut, Efficiency measurement with fuzzy data envelopment analysis of faculties of economics and administrative sciences. Cumhuriyet Univ. J. Econ. Admin. Sci. 15 (2014) 55–75. [Google Scholar]
  • E.K. Delice and G.F. Can, A new approach for ergonomic risk assessment integrating KEMIRA, best–worst and MCDM methods. Soft Comput. 24 (2020) 15093–15110. [CrossRef] [Google Scholar]
  • Turkey Health Statistics Report, Turkey Health Statistics Report Data. Accessed: October 25, 2021. https://www.ceicdata.com/en/turkey/health-statistics. [Google Scholar]
  • World Bank, World Bank Data. Accessed: October 25, 2021. https://databank.worldbank.org/. [Google Scholar]
  • Our World in Data, Our World in Data. Accessed: October 26, 2021. https://ourworldindata.org/. [Google Scholar]
  • Worldometers, Worldometers Data, Accessed: October 26, 2021. https://www.worldometers.info/. [Google Scholar]
  • K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour and M. Ferrara, Fractal-fractional mathematical model addressing the situation of corona virus in Pakistan. Results Phys. 19 (2020) 103560. [CrossRef] [Google Scholar]
  • O.A. Razzaq, D.U. Rehman, N.A. Khan, A. Ahmadian and M. Ferrara, Optimal surveillance mitigation of COVID-19 disease outbreak. Results Phys. 20 (2021) 103715. [CrossRef] [Google Scholar]
  • N. Jain, S. Jhunthra, H. Garg, V. Gupta, S. Mohan, A. Ahmadian, S. Salahshour and M. Ferrara, Prediction modelling of COVID using machine learning methods from B-cell dataset. Results Phys. 21 (2021) 2211–3797. [Google Scholar]
  • V. Gupta, K.C. Santosh, R. Arora, T. Ciano, K.S. Kalid and S. Mohan, Socioeconomic impact due to COVID-19: an empirical assessment. Inf. Process. Manage. 59 (2022) 1–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.