Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 2177 - 2196
DOI https://doi.org/10.1051/ro/2023061
Published online 15 September 2023
  • G. Abbasi, F. Khoshalhan and S.J. Hosseininezhad, Municipal solid waste management and energy production: A multi-objective optimization approach to incineration and biogas waste-to-energy supply chain. Sustain. Energy Tech. Assess. 54 (2022) 102809. [Google Scholar]
  • R.K. Bachar, S. Bhuniya, S.K. Ghosh and B. Sarkar, Controllable energy consumption in a sustainable smart manufacturing model considering superior service, flexible demand, and partial outsourcing. Mathematics 10 (2022) 4517. [CrossRef] [Google Scholar]
  • S.B. Choi, B.K. Dey, S.J. Kim and B. Sarkar, Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time. RAIRO: Oper. Res. 56 (2022) 1623–1653. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Dong, H.K. Jeswani, A. Nzihou and A. Azapagic, The environmental cost of recovering energy from municipal solid waste. Appl. Energy 267 (2020) 114792. [CrossRef] [Google Scholar]
  • S.N. Emenike and G. Falcone, A review on energy supply chain resilience through optimization. Renew. Sustain. Energy Rev. 134 (2020) 110088. [CrossRef] [Google Scholar]
  • Y. Fernando, P.S. Bee, C.J.C. Jabbou and A.M.T. Thome, Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies. Energy policy 118 (2018) 418–428. [CrossRef] [Google Scholar]
  • S. Ghosh, K.H. Kiifer, S.K. Roy and G.W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment. Compl. Intell. Sys. 8 (2022) 4115–4143. [CrossRef] [Google Scholar]
  • S.K. Goyal, An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 15 (1976) 107–111. [Google Scholar]
  • M.S. Habib, M. Omair, M.B. Ramzan, T.N. Chaudhary, M. Farooq and B. Sarkar, A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network. J. Clean. Prod. 366 (2022) 132752. [CrossRef] [Google Scholar]
  • S.K. Hota, S.K. Ghosh and B. Sarkar, A solution to the transportation hazard problem in a supply chain with an unreliable manufacturer. AIMS Environ. Sci. 9 (2022) 354–380. [CrossRef] [Google Scholar]
  • C. Hu, X. Liu, J. Lu and C.H. Wang, Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty. Appl. Energy 276 (2020) 115509. [CrossRef] [Google Scholar]
  • M.W. Iqbal and Y. Kang, Waste-to-energy supply chain management with energy feasibility condition. J. Clean. Prod. 291 (2021) 125231. [CrossRef] [Google Scholar]
  • M.H. Iqbal, Y. Kang and W.H. Jeon, Zero waste strategy for green supply chain management with minimization of energy consumption. J. Clean. Prod. 245 (2020) 118827. [CrossRef] [Google Scholar]
  • I. Khan, J. Jemai, H. Lim and B. Sarkar, Effect of electrical energy on the manufacturing setup cost reduction, transportation discounts, and process quality improvement in a two-echelon supply chain management under. Energies 12 (2019) 3733. [CrossRef] [Google Scholar]
  • A.S.H. Kugele, W. Ahmed and B. Sarkar, Geometric programming solution of second degree difficulty for carbon ejection controlled reliable smart production system. RAIRO: Oper. Res. 56 (2022) 1013–1029. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E. Lakovou, A. Karagiannidis, D. Vlachos, A. Toka and A. Malamakis, Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag. 30 (2020) 1860–1870. [Google Scholar]
  • A.S. Mahapatra, M.S. Mahapatra, B. Sarkar and S.K. Majumder, Benefit of preservation technology with promotion and time-dependent deterioration under fuzzy learning. Exp. Syst. App. 201 (2022) 117169. [CrossRef] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 256 (2020) 120268. [CrossRef] [Google Scholar]
  • M. Mittal and B. Sarkar, Stochastic behavior of exchange rate on an international supply chain under random energy price. Math. Comput. Simul. 205 (2023) 232–250. [CrossRef] [Google Scholar]
  • A. Mondal and S.K. Roy, Application of Choquet integral in interval type-2 Pythagorean fuzzy sustainable supply chain management under risk. Int. J. Intell. Syst. 37 (2021) 217–263. [Google Scholar]
  • A.K. Mondal, S. Pareek, K. Chaudhuri, A. Bera, R.K. Bachar and B. Sarkar, Technology license sharing strategy for remanufacturing industries under a closed-loop supply chain management bonding. RAIRO: Oper. Res. 56 (2022) 3017–3045. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • I. Moon, W.Y. Yun and B. Sarkar, Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Eur. J. Ind. Eng. 16 (2022) 371–397. [CrossRef] [Google Scholar]
  • T. Mukherjee, I. Sangal, B. Sarkar and T.M. Alkadash, Mathematical estimation for maximum flow of goods within a crossdock to reduce inventory. Math. Biosci. Eng. 19 (2022) 13710–13731. [CrossRef] [Google Scholar]
  • L.J.R. Nunes, T.P. Causer and D. Ciolkosz, Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 120 (2019). [Google Scholar]
  • S.V.S. Padiyar, N. Vandana, S.R.Singh Bhagat and B. Sarkar, Joint replenishment strategy for deteriorating multi-item through multi-echelon supply chain model with imperfect production under imprecise and inflationary environment. RAIRO: Oper. Res. 56 (2022) 3071–3096. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P. Pan, W. Peng, J. Li, H. Chen, G. Xu and T. Liu, Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation. Energy 238 (2021) 121947. [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309 (2022) 233–248. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology. Hacett. J. Math. Stat. 49 (2020) 1168–1189. [CrossRef] [Google Scholar]
  • I.G. Sahebi, A. Mosayebi, B. Masoomi and F. Marandi, Modeling the enablers for blockchain technology adoption in renewable energy supply chain. Tech. Soc. 68 (2022) 101871. [CrossRef] [Google Scholar]
  • B. Sarkar, B. Mridha and S. Pareek, A sustainable smart multi-type biofuel manufacturing with the optimum energy utilization under flexible production. J. Clean. Prod. 332 (2022) 129869. [CrossRef] [Google Scholar]
  • B. Sarkar, D. Takeyeva, R. Guchhait and M. Sarkar, Optimized radio-frequency identification system for different warehouse shapes. Know. Based Syst. 258 (2022) 109811. [CrossRef] [Google Scholar]
  • B. Sarkar, J. Joo, Y. Kim, H. Park and M. Sarkar, Controlling defective items in a complex multi-phase manufacturing system. RAIRO: Oper. Res. 56 (2022) 871–889. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Sarkar, R. Guchhait and B. Sarkar, Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. Int. J. Fuzzy Syst. 24 (2022) 2318–2332. [CrossRef] [Google Scholar]
  • A. Soylu, C. Oruc, M. Turkay, K. Fujita and T. Asakura, Synergy analysis of collaborative supply chain management in energy systems using multi-period MlLP. Eur. J. Oper. Res. 174 (2006) 387–403. [CrossRef] [Google Scholar]
  • O. Taherzadeh, M. Bithell and K. Richards, Water, energy and land insecurity in global supply chains. Global Environ. Change. 67 (2021) 102158. [CrossRef] [Google Scholar]
  • S. Theppitak, D. Hungwe, L. Ding, D. Xin, G. Yu and K. Yoshikawa, Comparison on solid biofuel production from wet and dry carbonization processes of food wastes. Appl. Energy 272 (2020) 115264. [CrossRef] [Google Scholar]
  • Q. Wang, F. Jiang and R. Li, Assessing supply chain greenness from the perspective of embodied renewable energy: A data envelopment analysis using multi-regional input-output analysis. Renew. Energy 189 (2022) 1292–1305. [CrossRef] [Google Scholar]
  • L. Xiang, Energy emergency supply chain collaboration optimization with group consensus through reinforcement learning considering non-cooperative behaviours. Energy 210 (2020) 118597. [CrossRef] [Google Scholar]
  • D. Yadav, R. Singh, A. Kumar and B. Sarkar, Reduction of pollution through sustainable and flexible production by controlling by-products. J. Environ. Inf. 40 (2022) 106–124. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.