RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Recent developments of operations research and data sciences
Page(s) 2197 - 2207
Published online 15 September 2023
  • J. Abouchabaka, R. Aboulaich, A. Nachaoui and A. Souissi, Quasi-variational inequality and shape optimization for solution of a free boundary problem. COMPEL 18 (1999) 143–164. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Aboud and A. Nachaoui, Single-rank quasi-Newton methods for the solution of nonlinear semiconductor equations. Adv. Math. Models Appl. 5 (2020) 70–79. [Google Scholar]
  • Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations. Found. Comput. Math. 21 (2021) 1075–1098. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Bessemoulin-Chatard, C. Chainais-Hillairet and M.-H. Vignal, Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52 (2014) 1666–1691. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer series in Computational Mathematics (1991). [CrossRef] [Google Scholar]
  • C. Cances, C. Chainais-Hillairet, J. Fuhrmann, B. Gaudeul, A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model. IMA J. Numer. Anal. 41 (2021) 271–314. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Chen and X. Long, Finite volume element approximation and analysis for a kind of semiconductor device simulation. J. Appl. Math. Comput. 33 (2010) 155–172. [CrossRef] [MathSciNet] [Google Scholar]
  • P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Vol. II Finite element methodes (Part I), Handbook of numerical analysis, Edited by P.G. Ciarlet and J.L. Lions (1991). [Google Scholar]
  • M.R. Correa and G. Taraschi, Optimal H(div) flux approximations from the Primal Hybrid Finite Element Method on quadrilateral meshes. Comput. Methods Appl. Mech. Engrg. 400 (2022) 115539. [CrossRef] [Google Scholar]
  • J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, A. M. S. (1964). [Google Scholar]
  • J. Cronin-Scanlon, Differential Equations. Marcel Dekker, New York (1980). [Google Scholar]
  • A. Ellabib and A. Nachaoui, On the numerical solution of a free boundary identification problem. Inverse Probl. Sci. Eng. 9 (2001) 235–260. [CrossRef] [Google Scholar]
  • A. Ellabib and A. Nachaoui, Existence de solutions pour le modee derive-diffusion avec terme d’avalanche. CRAS- Ser. I – Math. 332 (2001) 305–310. [Google Scholar]
  • A. Ellabib and A. Nachaoui Uniqueness of the stationary solutions for drift-diffusion models with avalanche generation. Extr. math. 18 (2003) 13–21. [Google Scholar]
  • A. Glitzky, M. Liero and G. Nika, An existence result for a class of electrothermal drift-diffusion models with Gauss-Fermi statistics for organic semiconductors. Anal. Appl. (Singap.) 19 (2021) 275–304. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Hayeck, A. Nachaouiand N.R. Nassif, Existence and Regularity for Van-Roosbroek systems with general mixed boundary conditions. COMPEL 9 (1990) 217–228. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Kan and M. Suzuki, Uniform estimates and uniqueness of stationary solutions to the drift-diffusion model for semiconductors. Appl. Anal. 98 (2019) 1799–1810. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Li, Q. Wang and X. Jin, A staggered asynchronous step integration algorithm for hybrid finite-element and discrete-element modeling. Int. J. Comput. Methods 19 (2022) 2150064. [CrossRef] [Google Scholar]
  • P. Markowich, The Stationary Semiconductor Equations. Springer (1986). [CrossRef] [Google Scholar]
  • M.S. Mock, Analysis of Mathematical Models of semiconductor devices. Boole Press, Dublin (1983). [Google Scholar]
  • C.M. Morandi and R. Russo, Numerical approximation of free boundary problem by variational inequalities. Application to semiconductor devices. Nonconvex Optim. Appl. 79 (2005) 697–722. [CrossRef] [Google Scholar]
  • A. Nachaoui, Iterative solution of the drift-diffusion equations. Numer. Algorithms 21 (1999) 323–341. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Nachaoui and N.R. Nassif, On the Uniqueness of the Solution to the Drift-Diffusion model in Semiconductor Analysis. COMPEL 11 (1992) 377–390. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Nachaoui and N.R. Nassif, Sufficient conditions for converging drift-diffusion discrete systems. Application to the finite element method. Math. Methods Appl. Sci. 19 (1996) 33–51. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Nachaoui, J. Abouchabaka and N. Rafalia, Parallel solvers for the depletion region identification in metal semiconductor field effect transistors. Numer. Algorithms 40 (2005) 187–199. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Peralta and K. Kunisch, Mixed and hybrid Petrov-Galerkin finite element discretization for optimal control of the wave equation. Numer. Math. 150 (2022) 591–627. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Semmler, M. Stingl, On the efficient optimization of optical properties of particulate monolayers by a hybrid finite element approach. Struct. Multidiscip. Optim. 63 (2021) 1219–1242. [CrossRef] [MathSciNet] [Google Scholar]
  • Q. Wang, Z. Ma, S. Bai, L. Zhang, B. Lu and H. Li, Research on parallel finite element methods for the drift-diffusion model in semiconductor device simulations. J. Numer. Methods Comput. Appl. 41 (2020) 85–104. [MathSciNet] [Google Scholar]
  • B. Wu, Existence of weak solutions to a class of degenerate semiconductor equations modeling avalanche generation. Math. Probl. Eng. (2009) 873683. [Google Scholar]
  • H. Wu and J. Jiang, Global solution to the drift-diffusion-Poisson system for semiconductors with nonlinear recombination- generation rate. Asymptot. Anal. 85 (2013) 75–105. [MathSciNet] [Google Scholar]
  • G. Xiulan, X. Jiasheng and H. Ling, An existence of stationary solutions for the drift-diffusion semiconductor equations. Dyn. Syst. Appl. 11 (2002) 521–529. [Google Scholar]
  • Q. Yang and Y. Yuan, An approximation of three-dimensional semiconductor devices by mixed finite element method and characteristics-mixed finite element method. Numer. Math. Theory Methods Appl. 8 (2015) 356–382. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Yu, K. Malakpoor and J.M. Huyghe, Comparing mixed hybrid finite element method with standard FEM in swelling simulations involving extremely large deformations. Comput. Mech. 66 (2020) 287–309. [CrossRef] [MathSciNet] [Google Scholar]
  • Q. Zhang, Q. Wang, L. Zhang and B. Lu, A class of finite element methods with averaging techniques for solving the three-dimensional drift-diffusion model in semiconductor device simulations. J. Comput. Phys. 458 (2022) 111086. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.