Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 2301 - 2314
DOI https://doi.org/10.1051/ro/2023101
Published online 18 September 2023
  • P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2009). [Google Scholar]
  • H.C.F. Apolinario, E.A. Papa Quiroz and P.R. Oliveira, A scalarization proximal point method for quasiconvex multiobjective minimization. J. Global Optim. 64 (2016) 79–96. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Attouch and A. Soubeyran, Local search proximal algorithms as decision dynamics with costs to move. Set-Valued Var. Anal. 19 (2011) 157–177. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Azagra, J. Ferrera and F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220 (2005) 304–361. [CrossRef] [MathSciNet] [Google Scholar]
  • T.Q. Bao, B.S. Mordukhovich and A. Soubeyran, Variational analysis in psychological modeling. J. Optim. Theory App. 164 (2015) 290–315. [CrossRef] [Google Scholar]
  • N. Baygorrea, E.A. Papa Quiroz and N. Maculan, Inexact proximal point methods for quasiconvex minimization on Hadamard manifolds. J. Oper. Res. Soc. Chin. 4 (2016) 397–424. [CrossRef] [Google Scholar]
  • G.C. Bento, O. Ferriera and P.R. Oliveira, Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73 (2010) 564–572. [CrossRef] [MathSciNet] [Google Scholar]
  • G.C. Bento, J.X. Cruz Neto and A. Soubeyran, A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22 (2014) 557–573. [CrossRef] [MathSciNet] [Google Scholar]
  • G.C. Bento, J.X. da Cruz Neto and P.R. Oliveira, A new approach to the proximal point method: convergence on general Riemannian Manifolds. J. Optim. Theory App. 168 (2016) 743–755. [CrossRef] [Google Scholar]
  • G.C. Bento, O. Ferriera and Y.R.L. Pereira, Proximal point method for vector optimization on Hadamard manifolds. Oper. Res. Lett. 46 (2018) 13–18. [CrossRef] [MathSciNet] [Google Scholar]
  • G.C. Bento, J.X. da Cruz Neto and L.V. de Meireles, Proximal point method for locally lipschitz functions in multiobjective optimization of Hadamard manifolds. J. Optim. Theory App. 179 (2018) 37–21. [CrossRef] [Google Scholar]
  • J. Bolte, A. Daniilidis and A. Lewis, M. Shiota, Clarke subgradients of stratifiable functions. SIAM J. Optim. 18 (2007) 556–572. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Bonnel, A.N. Iusem and B.F. Svaiter, Proximal methods in vector optimization. SIAM J. Optim. 15 (2005) 953–970. [CrossRef] [MathSciNet] [Google Scholar]
  • L.C. Ceng and J.C. Yao, Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 183 (2007) 1–19. [CrossRef] [Google Scholar]
  • Z. Chen, X.X. Huang and X.Q. Yang, Generalized proximal point algorithms for multi-objective optimization. Appl. Anal. 90 (2011) 935–949. [CrossRef] [MathSciNet] [Google Scholar]
  • S.-L. Chen, N.-J. Huang and D. O’Regan, Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds. J. Appl. Math. 2014 (2014) 524698. [Google Scholar]
  • T.D. Chuong, Generalized proximal method for efficient solutions in vector optimization. Numer. Funct. Anal. Opt. 32 (2011) 843–857. [CrossRef] [Google Scholar]
  • A. Concilio and G. Gerla, Quasi-metric spaces and point-free geometry. Math. Struct. Comput. Sci. 16 (2006) 115–137. [CrossRef] [Google Scholar]
  • J.X. Da Cruz Neto, P.R. Oliveira, P.A. Soares and A. Soubeyran, Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds. J. Convex Anal. 20 (2013) 395–438. [MathSciNet] [Google Scholar]
  • M.P. Do Carmo, Riemannian Geometry. Bikhausen, Boston (1992). [CrossRef] [Google Scholar]
  • O.P. Ferreira and P.R. Oliveira, Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002) 257–270. [Google Scholar]
  • A. Kristaly, Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures App. 101 (2014) 660–688. [CrossRef] [Google Scholar]
  • B. Martinet, Régularization d’inéquations variationelles par approximations successives. Revue Fracaise d’informatique et Recherche Operationelle 4 (1970) 154–159. [Google Scholar]
  • B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 330. Springer, Berlin (2006). [Google Scholar]
  • F.G. Moreno, P.R. Oliveira and A. Soubeyran, A proximal algorithm with quasi distance. Application to habit’s formation. Optimization 61 (2012) 1383–1403. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Motreanu and N.H. Pavel, Quasitangent vectors in flow-invariance and optimization problems on Banach manifolds. J. Math. Anal. App. 88 (1982) 116–132. [CrossRef] [Google Scholar]
  • E.A. Papa Quiroz and P.R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16 (2009) 46–69. [Google Scholar]
  • E.A. Papa Quiroz and P.R. Oliveira, Full convergence of the proximal point method for quasiconvex function on Hadamard manifolds. ESAIM: Control Optim. Calculus Var. 18 (2012) 483–500. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E.A. Papa Quiroz, H. Apolinario, K.D.V. Villacorta and P.R. Oliveira, A linear scalarization proximal point method for quasiconvex multiobjective minimization. J. Optim. Theory App. 183 (2019) 1028–1052. [CrossRef] [Google Scholar]
  • E.A. Papa Quiroz, N. Baygorrea and N. Maculan, Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard Manifolds. J. Optim. Theory App. 186 (2020) 879–898. [CrossRef] [Google Scholar]
  • E.A. Papa Quiroz, N. Baygorrea, N. Maculan, Clarke Subdiferential, Pareto-Clarke critical points and descent directions to multiobjective optimization on Hadamard manifolds, in MCO 2021: Modelling, Computation and Optimization in Information Systems and Management Sciences. Springer International Publishing, Cham (2021) 182–192. [Google Scholar]
  • T. Rapcsák, Smooth Nonlinear Optimization in ℝn. Kluwer Academic Publishers (1997). [Google Scholar]
  • R.A. Rocha, P.R. Oliveira, R.M. Gregório and M. Souza, A proximal point algorithm with quasi-distance in multi-objective optimization. J. Optim. Theory App. 171 (2016) 964–979. [CrossRef] [Google Scholar]
  • R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 877–898. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces. J. Math. Anal. Appl. 283 (2003) 219–235. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Sakai, Riemannian Geometry. American Mathematical Society, Providence, RI (1996). [Google Scholar]
  • A. Soubeyran, Variational rationality, a theory of individual stability and change: worthwhile and ambidextry behaviors. GREQAM, Aix Marseille University. Preprint (2009). [Google Scholar]
  • A. Soubeyran, Variational rationality and the unsatisfied man: routines and the course pursuit between aspirations, capabilities and beliefs. GREQAM, Aix Marseille University. Preprint (2010). [Google Scholar]
  • A. Soubeyran, A theory of worthwhile stay and change approach-avoidance transitions ending in traps. GREQAM-AMSE, Aix Marseille University. Preprint (2016). [Google Scholar]
  • A. Soubeyran, Variational rationality: towards a grand theory of motivation driven by worthwhile moves. AMSE, Aix-Marseille University. Preprint (2021). [Google Scholar]
  • A. Soubeyran, Variational rationality: the concepts of motivation and motivational force. AMSE, Aix-Marseille University. Preprint (2021). [Google Scholar]
  • A. Soubeyran, Variational rationality. The resolution of goal conflicts via stop and go approach-avoidance dynamics. AMSE, Aix-Marseille University. Preprint (2021c). [Google Scholar]
  • A. Soubeyran, A general theory of moving goals and intentions as satisficing worthwhile moves. AMSE, Aix-Marseille University. Preprint (2021d). [Google Scholar]
  • J.C. Souza, Proximal point methods for lipschitz functions on Hadamard manifolds: scalar and vectorial cases. J. Optim. Theory App. 179 (2018) 745–760. [CrossRef] [Google Scholar]
  • C. Udriste, Convex Function and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers (1994). [CrossRef] [Google Scholar]
  • K.D.V. Villacorta and P.R. Oliveira, An interior proximal method in vector optimization. Eur. J. Oper. Res. 214 (2011) 485–492. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.