Open Access
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2833 - 2851
Published online 31 October 2023
  • A.K. Bhunia and S.S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 74 (2014) 169–178. [Google Scholar]
  • J.M. Borwein, Convex Relations in Analysis and Optimization. Generalized concavity in optimization and economics, Academic Press, New York (1981) 335–377. [Google Scholar]
  • Y. Chalco-Cano, W.A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim. Decis. Mak. 12 (2013) 305–322. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Ghosh, R.S. Chauhan, R. Mesiar and A.K. Debnatha, Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Inform. Sci. 510 (2020) 317–340. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Hu and S. Wang, A novel approach in uncertain programming part I: New arithmetic and order relation for interval numbers. J. Ind. Manag. Optim. 2 (2006) 351. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219–225. [Google Scholar]
  • M.B. Khan, M.A. Noor, H.M. Al-Bayatti and K.I. Noor, Some new inequalities for LR-log-h-convex IVFs by means of pseudo order relation. Appl. Math. Inf. Sci. 15 (2021) 459–470. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Kumar and D. Ghosh, Ekeland’s variational principle for interval-valued functions. Comput. Appl. Math. 42 (2023) 28. [CrossRef] [Google Scholar]
  • L. Li, Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders. Fuzzy Optim. Decis. Mak. 22 (2023) 247–265. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems. J. Inequal. Appl. 2015 (2015) 179. [CrossRef] [Google Scholar]
  • S. Markov, Calculus for interval functions of a real variable. Computing 22 (1979) 325–337. [Google Scholar]
  • S.R. Mohan and S.K. Neogy, On invex sets and preinvex functions. J. Math. Anal. Appl. 189 (1995) 901–908. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Pedroni, Computational methods for the robust optimization of the design of a dynamic aerospace system in the presence of aleatory and epistemic uncertainties. Mech. Syst. Signal Process. 164 (2022) 108206. [CrossRef] [Google Scholar]
  • D. Qiu, The generalized hukuhara differentiability of interval-valued function is not fully equivalent to the one-sided differentiability of its endpoint functions. Fuzzy Sets Syst. 419 (2021) 158–68. [CrossRef] [Google Scholar]
  • M. Rahman, A. Shaikh and A. Bhunia, Necessary and sufficient optimality conditions for nonlinear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 147 (2020) 106634. [CrossRef] [Google Scholar]
  • M.S. Rahman, A.K. Manna, A.A. Shaikh and A.K. Bhunia, An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization. Int. J. Intell. Syst. 35 (2020) 1280–1326. [CrossRef] [Google Scholar]
  • M.R. Safi and A. Razmjoo, Solving fixed charge transportation problem with interval parameters. Appl. Math. Model. 37 (2013) 8341–8347. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161 (2010) 1564–1584. [Google Scholar]
  • L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory 71 (2009) 1311–1328. [CrossRef] [Google Scholar]
  • L. Stefanini and M. Arana-Jiménez, Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Set Syst. 362 (2019) 1–34. [CrossRef] [Google Scholar]
  • S. Treanţă, On a class of constrained interval-valued optimization problems governed by mechanical work cost functionals. J. Optim. Theory Appl. 188 (2021) 913–924. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Treanţă, LU-optimality conditions in optimization problems with mechanical work objective functionals. IEEE Trans. Neural Netw. Learn. Syst. 33 (2022) 4971–4978. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • S. Treanţă, Saddle-point optimality criteria involving (ρ, b, d)-invexity and (ρ, b, d)-pseudoinvexity in interval-valued optimization problems. Int. J. Control 95 (2022) 1042–1050. [CrossRef] [Google Scholar]
  • H.C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176 (2007) 46–59. [CrossRef] [Google Scholar]
  • Z. Wu and J. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality. Fuzzy Sets Syst. 160 (2009) 1590–1619. [CrossRef] [Google Scholar]
  • Q. Wu, X. Liu, J. Qin and L. Zhou, Multi-criteria group decision-making for portfolio allocation with consensus reaching process under interval type-2 fuzzy environment. Inform. Sci. 570 (2021) 668–688. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Yang and D. Li, On properties of preinvex functions. J. Math. Anal. Appl. 256 (2001) 229–241. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014) 607–631. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.