RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Recent developments of operations research and data sciences
Page(s) 2493 - 2517
Published online 06 October 2023
  • M. Aghbashlo, W. Peng, M. Tabatabaei, S.A. Kalogirou, S. Soltanian, H. Hosseinzadeh-Bandbafha, O. Mahian and S.S. Lam, Machine learning technology in biodiesel research: a review. Prog. Ener. Comb. Sci. 85 (2021) 100904. [CrossRef] [Google Scholar]
  • M. Ahmadi and M. Khashei, Generalized support vector machines (GSVMs) model for real-world time series forecasting. Soft Comput. 25 (2021) 14139–14154. [CrossRef] [Google Scholar]
  • K.M. Almustafa, Classification of epileptic seizure dataset using different machine learning algorithms. Inf. Med. Unlocked 21 (2020) 100444. [CrossRef] [Google Scholar]
  • J.K. Anlauf and M. Biehl, The AdaTron – an adaptive perceptron algorithm. Europhys. Lett. 10 (1989) 687–692. [CrossRef] [Google Scholar]
  • R. Batuwita and V. Palade, FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18 (2010) 558–571. [CrossRef] [Google Scholar]
  • J. Bi and T. Zhang, Support vector classification with input data uncertainty. Adv. Neur. Inf. Proc. Syst. 17 (2005) 161–168. [Google Scholar]
  • B. Charbuty and A. Abdulazeez, Classification based on decision tree algorithm for machine learning. J. App. Sci. Tech. Trends 2 (2021) 20–28. [CrossRef] [Google Scholar]
  • P. Chen and C. Pan, Diabetes classification model based on boosting algorithms. BMC Bioinf. 19 (2018) 1–9. [CrossRef] [Google Scholar]
  • C. Cortes and V. Vapnik, Support-vector networks. Mach. Learning 20 (1995) 273–297. [Google Scholar]
  • Y. Dhanasekaran and P. Murugesan, Improved bias value and new membership function to enhance the performance of fuzzy support vector machine. Expert Syst. App. 208 (2022) 118003. [CrossRef] [Google Scholar]
  • D. Dua and C. Graff, UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). [Google Scholar]
  • K. El Moutaouakil and M. Ettaouil, Reduction of the continuous Hopfield architecture. J. Comput. 4 (2012) 64–70. [Google Scholar]
  • K. El Moutaouakil and A. Touhafi, A new recurrent neural network fuzzy mean square clustering method, in 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). IEEE (2020) 1–5. [Google Scholar]
  • K. El Moutaouakil, A. El Ouissari, A. Touhafi and N. Aharrane, An improved density based support vector machine (DBSVM), in 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). IEEE (2020) 1–7. [Google Scholar]
  • K. El Moutaouakil, A. Yahyaouy, S. Chellak and H. Baizri, An optimized gradient dynamic-neuro-weighted-fuzzy clustering method: application in the nutrition field. Int. J. Fuzzy Syst. 24 (2022) 3731–3744. [CrossRef] [Google Scholar]
  • K. El Moutaouakil, M. Roudani and A. El Ouissari, Optimal Entropy Genetic Fuzzy-C-means SMOTE (OEGFCM-SMOTE). Knowl. Based Sys. 262 (2023) 110235. [CrossRef] [Google Scholar]
  • A. El Ouissari and K. El Moutaouakil, Density based fuzzy support vector machine: application to diabetes dataset. Math. Model. Comput. 8 (2021) 747–760. [CrossRef] [Google Scholar]
  • M. Ettaouil, K. El Moutaouakil and Y. Ghanou, The placement of electronic circuits problem: a neural network approach. Math. Model. Nat. Phen. 5 (2010) 109–115. [CrossRef] [EDP Sciences] [Google Scholar]
  • T.-T. Frie, N. Cristianini and I.C. Campbell, The Kernel-Adatron: a fast and simple learning procedure for support vector machines, in Proceedings of the 15th International Conference on Machine Learning, edited by J. Shavlik. Morgan Kaufmann, San Francisco, CA (1998) 188–196. [Google Scholar]
  • E.L. Glaeser, S.D. Kominers, M. Luca and N. Naik, Big data and big cities: the promises and limitations of improved measures of urban life. Econ. Inqui. 56 (2018) 114–137. [CrossRef] [Google Scholar]
  • H. Guo and W. Wang, Granular support vector machine: a review. Artif. Intel. Rev. 51 (2019) 19–32. [CrossRef] [Google Scholar]
  • K. Haddouch and K. El Moutaouakil, New starting point of the continuous hopfield network, in Big Data, Cloud and Applications: Third International Conference, BDCA 2018, Kenitra, Morocco. Springer, Cham (2018, April) 379–389. [Google Scholar]
  • B.B. Hazarika and D. Gupta, Density-weighted support vector machines for binary class imbalance learning. Neur. Comput. Appl. 33 (2021) 4243–4261. [CrossRef] [Google Scholar]
  • J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-states neurons, Proc. Nat. Acad. Sci. USA 81 (1984) 3088–3092. [CrossRef] [PubMed] [Google Scholar]
  • J.J. Hopfield, D.W. Tank, Neural computation of decisions in optimization problems, Biol. Cybern. 52 (1985) 1–25. [Google Scholar]
  • T.-M. Huang and V. Kecman, Bias term b in SVMs again, in Proceedings of ESANN 2004, 12th European Symposium on Artificial Neural Networks Bruges, Belgium (2004). [Google Scholar]
  • T. Joachims, Making large-scale SVM learning practical. Advances in kernel methods-support vector learning. (1999). [Google Scholar]
  • V. Kecman, Iterative k data algorithm for solving both the least squares SVM and the system of linear equations, in SoutheastCon, IEEE (2015) 1–6. [Google Scholar]
  • V. Kecman, M. Vogt and T.-M. Huang, On the equality of Kernel AdaTron and sequential minimal optimization in classification and regression tasks and alike algorithms for kernel machines, in Proceedings of the 11th European Symposium on Artificial Neural Networks, ESANN. Bruges, Belgium (2003) 215–222. [Google Scholar]
  • V. Kecman, T.M. Huang and M. Vogt, Iterative single data algorithm for training kernel machines from huge data sets: theory and performance. Support Vector Mach.: Theory App. 177 (2005) 255–274. [CrossRef] [Google Scholar]
  • S. Laxmi and S.K. Gupta, Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition. Eng. App. Artif. Intell. 110 (2022) 104687. [CrossRef] [Google Scholar]
  • A.M. Law, How to build valid and credible simulation models, in 2019 Winter Simulation Conference (WSC). IEEE (2019, December) 1402–1414. [Google Scholar]
  • Y.J. Lee and O.L. Mangasarian, SSVM: a smooth support vector machine for classification. Comput. Opt. Appl. 20 (2001) 5–22. [CrossRef] [Google Scholar]
  • C.F. Lin and S.D. Wang, Fuzzy support vector machines. IEEE Trans. Neur. Netw. 13 (2002) 464–471. [CrossRef] [Google Scholar]
  • J. Mercer, Functions of positive and negative type, and their connection the theory of integral equations. Phil. Trans. R. Soc. London Ser. A, Cont. Pap. Math. Phy. Char. 209 (1909) 415–446. [Google Scholar]
  • M. Minoux, Mathematical Programming: Theories and Algorithms, Duond, 1983. [Google Scholar]
  • E. Osuna, R. Freund and F. Girosi, An improved training algorithm for support vector machines, in Neural Networks for Signal Processing VII, Proceedings of the 1997 Signal Processing Society Workshop (1997) 276–285. [CrossRef] [Google Scholar]
  • J. Platt, Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research Technical Report MSR-TR-98-14 (1998). [Google Scholar]
  • S. Rezvani, X. Wang and F. Pourpanah, Intuitionistic fuzzy twin support vector machines. IEEE Trans. Fuzzy Syst. 27 (2019) 2140–2151. [CrossRef] [Google Scholar]
  • S. Russell and P. Norvig, Artificial Intelligence a Modern Approach, 3rd edition. Pearson Education, 2010. [Google Scholar]
  • B. Schölkopf, A.J. Smola, R.C. Williamson and P.L. Bartlett, New support vector algorithms. Neur. Comput. 12 (2000) 1207–1245. [CrossRef] [PubMed] [Google Scholar]
  • B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola and R.C. Williamson, Estimating the support of a high-dimensional distribution. Neur. Comput. 13 (2001) 1443–1471. [CrossRef] [PubMed] [Google Scholar]
  • B. Schölkopf, A.J. Smola and F. Bach, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002). [Google Scholar]
  • A. Shokrzade, M. Ramezani, F.A. Tab and M.A. Mohammad, A novel extreme learning machine based kNN classification method for dealing with big data. Expert Syst. App. 183 (2021). [Google Scholar]
  • E.W. Steyerberg, Clinical Prediction Models. Springer International Publishing, Cham (2019) 309–328. [CrossRef] [Google Scholar]
  • M. Tanveer, T. Rajani, R. Rastogi, Y.H. Shao and M.A. Ganaie, Comprehensive review on twin support vector machines. Ann. Oper. Res. (2022) 1–46. DOI: 10.1007/s10479-022-04575-w. [Google Scholar]
  • I.O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner and A. Dosovitskiy, Mlp-mixer: an all-mlp architecture for vision. Adv. Neur. Inf. Proc. Sys. 34 (2021) 24261–24272. [Google Scholar]
  • V. Vapnik, The Nature of Statistical Learning Theory. Springer Science and Business Media (1999). [Google Scholar]
  • R.N. Verma, R. Deo, R. Srivastava, N. Subbarao and G.P. Singh, A new fuzzy support vector machine with pinball loss. Discover Artif. Intell. 3 (2023) 14. [CrossRef] [Google Scholar]
  • K. Veropoulos, Machine learning approaches to medical decision making. Ph.D. thesis, The University of Bristol, Bristol, UK (2001). [Google Scholar]
  • M. Vogt, SMO algorithms for support vector machines without bias. Institute Report, Institute of Automatic Control, TU Darmstadt, Darmstadt, Germany. Available at (2002). [Google Scholar]
  • Y. Wang, S. Wang and K.K. Lai, A new fuzzy support vector machine to evaluate credit risk. IEEE Trans. Fuzzy Syst. 13 (2005) 820–831. [CrossRef] [Google Scholar]
  • I. Wickramasinghe and H. Kalutarage, Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput. 25 (2021) 2277–2293. [CrossRef] [Google Scholar]
  • X. Xie and Y. Xiong, Generalized multi-view learning based on generalized eigenvalues proximal support vector machines. Exp. Syst. Appl. 194 (2022) 116491. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.