Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
|
|
---|---|---|
Page(s) | 2473 - 2491 | |
DOI | https://doi.org/10.1051/ro/2023127 | |
Published online | 06 October 2023 |
- M. Achache, A weighted path-following method for the linear complementarity problem. Stud. Univ. Babe.s-Bolyai Math. Ser. Inform. 49 (2004) 61–73. [Google Scholar]
- M. Achache, A new primal–dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
- M. Achache and M. Goutali, A primal-dual interior point algorithm for Convex Quadratic Programs. Stud. Univ. Babe.s-Bolyai Math. Ser. Inform. LVII (2012) 48–58. [Google Scholar]
- Y.Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization. SIAM. J. Optim. 15 (2005) 101–128. [Google Scholar]
- M. Bouafia, D. Benterki and A. Yassine, Complexity analysis of interior point methods for linear programming based on a parameterized kernel function. RAIRO: OR 50 (2016) 935–949. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Bouafia, D. Benterki and A. Yassine, An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170 (2016) 528–545. [CrossRef] [MathSciNet] [Google Scholar]
- N. Boudjellal, H. Roumili and D. Benterki, A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function. Optimization 70 (2021) 1703–1724. [CrossRef] [MathSciNet] [Google Scholar]
- Zs. Darvay, New interior point algorithms in linear programming. Adv. Model. Optim. 5 (2003) 51–92. [MathSciNet] [Google Scholar]
- Zs. Darvay and P.R. Takàcs, New method for determining search directions for interior-point algorithms in linear optimization. Optim. Lett. 12 (2018) 1099–1116. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Darvay, I.M. Papp and P.R. Takács, Complexity analysis of a full-Newton step interior-point method for linear optimization. Period. Math. Hungar. 73 (2016) 27–42. [CrossRef] [MathSciNet] [Google Scholar]
- Zs. Darvay, T. Illés and P.R. Rigó, Predictor-corrector interior-point algorithm for p*(k)-linear complementarity problems based on a new type of algebraic equivalent transformation technique. Eur. J. Oper. Res. 298 (2022) 25–35. [CrossRef] [Google Scholar]
- Q. Deng, Q. Feng, W. Gao, D. Ge, B. Jiang, Y. Jiang, J. Liu, T. Liu, C. Xue, Y. Ye and C. Zhang, New developments of ADMM-based interior point methods for linear programming and conic programming. Preprint arXiv:2209.01793 (2023). [Google Scholar]
- M. El Ghami, Z. Guennoun, S. Bouali and T. Steihaug, Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236 (2012) 3613–3623. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Feng and L. Fang, A wide neighborhood interior-point method with iteration-complexity bound for semidefinite programming. Optimization 59 (2010) 1235–1246. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gay, Electronicmail distribution of linear programming test problems. Math. Program. Soc. COAL Newslett. 3 (1985) 10–12. [Google Scholar]
- L. Guerra, A class of new search directions for full-nt step feasible interior point method in semidefinite optimization. RAIRO:OR 56 (2022) 3955–3971. [CrossRef] [EDP Sciences] [Google Scholar]
- L.L.C. Gurobi Optimization, Gurobi optimizer reference manual (Gurobi Optimization, LLC) (2022). [Google Scholar]
- B. Kheirfam, A new search direction for full-newton step interior-point method in p*(k)-HLCP. Numer. Funct. Anal. Optim. 40 (2019) 1169–118. [CrossRef] [MathSciNet] [Google Scholar]
- B. Kheirfam, A new full-NT step interior-point method for circular cone optimization. Croat. Oper. Res. Rev. 10 (2019) 275–287. [CrossRef] [MathSciNet] [Google Scholar]
- B. Kheirfam, A new search direction for full-Newton step infeasible interior-point method in linear optimization. Preprint arXiv:2102.07223v1 (2021). [Google Scholar]
- B. Kheirfam and M. Moslem, A polynomial-time algorithm for linear optimization based on a new kernel function with trigonometric barrier term. Yugosl. J. Oper. Res. 25 (2015) 233–250. [CrossRef] [MathSciNet] [Google Scholar]
- X. Li and M. Zhang, Interior-point algorithm for linear optimization based on a new trigonometric kernel function. Oper. Res. Lett. 43 (2015) 471–475. [CrossRef] [MathSciNet] [Google Scholar]
- T. Lin, S. Ma, Y. Ye and S. Zhang, An ADMM-based interior-point method for large-scale linear programming. Optim. Methods Softw. 36 (2021). [Google Scholar]
- M. Peyghami, S. Hafshejani and L. Shirvani, Complexity of interior point methods for linear optimization based on a new trigonometric kernel function. J. Comput. Appl. Math. 255 (2014) 74–85. [CrossRef] [MathSciNet] [Google Scholar]
- C. Roos, T. Terlaky and J.P. Vial, Theory and algorithms for linear optimization, an interior approach. John Wiley and Sons, Chichester, UK (1997). [Google Scholar]
- P.R. Takàcs and Z. Darvay, A primal-dual interior-point algorithm for symmetric optimization based on a new method for finding search directions. Optimization 67 (2018) 889–905. [CrossRef] [MathSciNet] [Google Scholar]
- G. Sonnevend, An analytic center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, edited by A. Prekopa, J. Szelezsan and B. Strazicky. In: Lect. Notes Control Inf. Sci. 84 (1986) 866–876. [Google Scholar]
- G. Wang and Y. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 353 (2009) 339–349. [CrossRef] [MathSciNet] [Google Scholar]
- G. Wang and Y. Bai, A primal-dual path-following interior-point algorithm for second-order cone optimization with full Nesterov-Todd step. Appl. Math. Comput. 215 (2009) 1047–1061. [MathSciNet] [Google Scholar]
- G. Wang, Y. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl. 154 (2012) 966–985. [CrossRef] [MathSciNet] [Google Scholar]
- S.J. Wright, Primal-dual interior point methods, Copyright by SIAM. (1997). [Google Scholar]
- L. Zhang and Y. Xu, A full-Newton step interior-point algorithm based on modified Newton direction. Oper. Res. Lett. 39 (2011) 318–322. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.