Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
|
|
---|---|---|
Page(s) | 2465 - 2471 | |
DOI | https://doi.org/10.1051/ro/2023147 | |
Published online | 29 September 2023 |
- A. Amahashi, On factors with all degrees odd. Graphs Comb. 1 (1985) 111–114. [CrossRef] [Google Scholar]
- C. Bujtás, S. Jendrol’ and Z. Tuza, On specific factors in graphs. Graphs Comb. 36 (2020) 1391–1399. [CrossRef] [Google Scholar]
- V. Chvátal, Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973) 215–228. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cui and M. Kano, Some results on odd factors of graphs. J. Graph Theory 12 (1988) 327–333. [CrossRef] [MathSciNet] [Google Scholar]
- H. Enomoto, B. Jackson, P. Katerinis and A. Saito, Toughness and the existence of k-factors. J. Graph Theory 9 (1985) 87–95. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao and W. Wang, Tight binding number bound for P≥3-factor uniform graphs. Inf. Process. Lett. 172 (2021) 106162. [CrossRef] [Google Scholar]
- W. Gao, W. Wang and Y. Chen, Tight isolated toughness bound for fractional (k, n)-critical graphs. Discrete Appl. Math. 322 (2022) 194–202. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two. Discrete Math. 283 (2004) 129–135. [Google Scholar]
- P. Katerinis, Toughness of graphs and the existence of factors. Discrete Math. 80 (1990) 81–92. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kim, O. Suil, J. Park and H. Ree, An odd [1, b]-factor in regular graphs from eigenvalues. Discrete Math. 343 (2020) 111906. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kouider and Z. Lonc, Stability number and [a, b]-factors in graphs. J. Graph Theory 46 (2004) 254–264. [CrossRef] [MathSciNet] [Google Scholar]
- H. Liu and H. Lu, A degree condition for a graph to have (a, b)-parity factors. Discrete Math. 341 (2018) 244–252. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lu, Z. Yang and X. Zhang, A characterization for graphs having strong parity factors. Graphs Comb. 37 (2021) 945–949. [CrossRef] [Google Scholar]
- H. Matsuda, Fan-type results for the existence of [a, b]-factors. Discrete Math. 306 (2006) 688–693. [CrossRef] [MathSciNet] [Google Scholar]
- T. Niessen and B. Randerath, Regular factors of simple regular graphs and factor-spectra. Discrete Math. 185 (1998) 89–103. [CrossRef] [MathSciNet] [Google Scholar]
- T. Nishimura, Independence number, connectivity and r-factors. J. Graph Theory 13 (1989) 63–69. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Degree conditions for the existence of a {P2, P5}-factor in a graph. RAIRO: Oper. Res. 57 (2023) 2231–2237. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Prob. Inf. Transm. 56 (2020) 270–277. [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO: Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Isolated toughness for path factors in networks. RAIRO: Oper. Res. 56 (2022) 2613–2619. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Wu, Path-factor critical covered graphs and path-factor uniform graphs. RAIRO: Oper. Res. 56 (2022) 4317–4325. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Z. Yang, X. Zhang, H. Lu and Y. Lin, Sufficient conditions for a graph to have all [a, b]-factors and (a, b)-parity factors. Bull. Malaysian Math. Sci. Soc. 45 (2022) 1657–1667. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. 323 (2022) 343–348. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A note of generalization of fractional ID-factor-critical graphs. Fundam. Inf. 187 (2022) 61–69. [Google Scholar]
- S. Zhou, Degree conditions and path factors with inclusion or exclusion properties. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie 66 (2023) 3–14. [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. 39 (2023) 232–238. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. (2022). DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory 43 (2023) 233–244. [Google Scholar]
- S. Zhou and Q. Bian, The existence of path-factor uniform graphs with large connectivity. RAIRO: Oper. Res. 56 (2022) 2919–2927. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou and H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs. Linear Algebra Appl. 661 (2023) 149–162. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Mathematicae 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106 (2022) 195–202. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Q. Bian and Z. Sun, Two sufficient conditions for component factors in graphs. Discuss. Math. Graph Theory 43 (2023) 761–766. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Some sufficient conditions for path-factor uniform graphs. Aequationes Mathematicae 97 (2023) 489–500. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.