Open Access
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2435 - 2464
Published online 25 September 2023
  • M. Abuhelwa, W.A. Salah and M.J.K. Bashir, Potential energy production from organic waste and its environmental and economic impacts at a tertiary institution in Palestine. Environ. Qual. Manag. (2023). DOI: 10.1002/tqem.21960. [Google Scholar]
  • S. Adak and G.S. Mahapatra, Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration. Ann. Oper. Res. 315 (2022) 1551–1571. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Alavian, E. Yongsoon, S.M. Semyon and L. Zhang, Smart production systems: automating decision-making in manufacturing environment. Int. J. Prod. Res. 58 (2020) 828–845. [CrossRef] [Google Scholar]
  • F. Angizeh, H. Montero, A. Vedpathak and M. Parvania, Optimal production scheduling for smart manufacturers with application to food production planning. Comput. Elec. Eng. 84 (2020) 106609. [CrossRef] [Google Scholar]
  • A. Debnath and B. Sarkar, Effect of circular economy for waste nullification under a sustainable supply chain management. J. Clean. Prod. 385 (2023) 135477. [CrossRef] [Google Scholar]
  • M. Ben-Daya, R. As’ad and K.A. Nabi, A single-vendor multi-buyer production remanufacturing inventory system under a centralized consignment arrangement. Comput. Ind. Eng. 135 (2019) 10–27. [CrossRef] [Google Scholar]
  • A.I. Malik, B. Sarkar, M.W. Iqbal, M. Ullah, I. Khan and M.B. Ramzan, Coordination supply chain management in flexible production system and service level constraint: A Nash bargaining model. Comp. Indust. Eng. 177 (2023) 109002. [CrossRef] [Google Scholar]
  • H. Cañas, J. Mula, F. Campuzano-Bolarín and R. Poler, A conceptual framework for smart production planning and control in Industry 4.0. Comput. Ind. Eng. 173 (2022) 108659. [CrossRef] [Google Scholar]
  • J. Chaab and O.C. Demirag, Effects of consumer loyalty and product web compatibility on cooperative advertising and pricing policies in a dual-channel supply chain. RAIRO: OR 56 (2022) 2557–2580. [CrossRef] [EDP Sciences] [Google Scholar]
  • S.Y. Chang and T.Y. Yeh, A two-echelon supply chain of a returnable product with fuzzy demand. Appl. Math. Model. 37 (2013) 4305–4315. [CrossRef] [MathSciNet] [Google Scholar]
  • U. Chaudhari, A. Bhadoriya, M.Y. Jani and B. Sarkar, A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations. Math. Comput. Simul. 207 (2023) 556–574. [CrossRef] [Google Scholar]
  • S.C. Das, A.M. Zidan, A.K. Manna, A.A. Shaikh and A.K. Bhunia, An application of preservation technology in inventory control system with price dependent demand and partial backlogging. Alex. Eng. J. 59 (2020) 1359–1369. [CrossRef] [Google Scholar]
  • Y. Emamian, I.N. Kamalabadi and A. Eydi, Developing and solving an integrated model for production routing in sustainable closed-loop supply chain. J. Clean. Prod. 302 (2021) 126997. [CrossRef] [Google Scholar]
  • C.B. Gabler, V.M. Landers, R. Agnihotri and T.R. Morgan, Environmental orientation on the frontline: a boundaryspanning perspective for supply chain management. J. Bus. Logist. (2023). DOI: 10.1111/jbl.12328. [Google Scholar]
  • P. Gautam, S. Maheshwari, A. Hasan, A. Kausar and C.K. Jaggi, Optimal inventory strategies for an imperfect production system with advertisement and price reliant demand under rework option for defectives. RAIRO: OR 56 (2022) 183–197. [CrossRef] [EDP Sciences] [Google Scholar]
  • J. Heydari, K. Govindan and R. Sadeghi, Reverse supply chain coordination under stochastic remanufacturing capacity. Int. J. Prod. Econ. 202 (2018) 1–11. [CrossRef] [Google Scholar]
  • B. Sarkar and R. Guchhait, Ramification of information asymmetry on a green supply chain management with the cap-trade, service, and vendor-managed inventory strategies. Elect. Comm. Res. App. 60 (2023) 101274. [CrossRef] [Google Scholar]
  • J. Huo, M. Zhang, D. Wang, A.S. Mujumdar, B. Bhandari and L. Zhang, New preservation and detection technologies for edible mushrooms: a review. J. Sci. Food Agric. (2023). DOI: 10.1002/jsfa.12472. [Google Scholar]
  • I. Kazancoglu, M. Ozbiltekin-Pala, S.K. Mangla, Y. Kazancoglu and F. Jabeen, Role of flexibility, agility and responsiveness for sustainable supply chain resilience during COVID-19. J. Clean. Prod. 362 (2022) 132431. [CrossRef] [Google Scholar]
  • M. Kerin and D.T. Pham, A review of emerging industry 4.0 technologies in remanufacturing. J. Clean. Prod. 237 (2019) 117805. [CrossRef] [Google Scholar]
  • G. Li, X. He, J. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega 84 (2019) 114–126. [CrossRef] [Google Scholar]
  • S. Saha, B. Sarkar and M. Sarkar, Application of improved meta-heuristic algorithms for green preservation technology management to optimize dynamical investments and replenishment strategies. Math. Comp. Simul. 209 (2023) 426–450. [CrossRef] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 256 (2020) 120268. [CrossRef] [Google Scholar]
  • U.M. Modibbo, M. Arshad, O. Abdalghani and I. Ali, Optimization and estimation in system reliability allocation problem. Reliab. Eng. Syst. Saf. 212 (2021) 107620. [CrossRef] [Google Scholar]
  • B. Mridha, S. Pareek, A. Goswami and B. Sarkar, Joint effects of production quality improvement of biofuel and carbon emissions towards a smart sustainable supply chain management. J. Clean. Prod. 386 (2023) 135629. [CrossRef] [Google Scholar]
  • B. Sarkar, H. Seok, T.K. Jana and B.K. Dey, Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand? J. Retail. Consum. Serv. 75 (2023) 103439. [CrossRef] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions. J. Clean. Prod. 279 (2021) 123699. [CrossRef] [Google Scholar]
  • S. Ouaret, J.P. Kennè and A. Gharbi, Stochastic optimal control of random quality deteriorating hybrid manufacturing/remanufacturing systems. J. Manuf. Syst. 49 (2018) 172–185. [CrossRef] [Google Scholar]
  • B. Pal, A. Mandal and S.S. Sana, Two-phase deteriorated supply chain model with variable demand and imperfect production process under two-stage credit financing. RAIRO: OR 55 (2021) 457–480. [CrossRef] [EDP Sciences] [Google Scholar]
  • D. Yadav, R. Kumari, N. Kumar and B. Sarkar, Reduction of waste and carbon emission through the selection of items with crossprice elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 297 (2021) 126298. [CrossRef] [Google Scholar]
  • M. Pervin, S.K. Roy, P. Sannyashi and G.W. Weber, Sustainable inventory model with environmental impact for noninstantaneous deteriorating items with composite demand. RAIRO: OR 57 (2023) 237–261. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Rahaman, S.P. Mondal, S. Alam and S.K. De, A study of a lock fuzzy EPQ model with deterioration and stock and unit selling price-dependent demand using preservation technology. Soft Comput. 26 (2022) 2721–2740. [CrossRef] [Google Scholar]
  • M. Rahmani, A. Romsdal, F. Sgarbossa, J.O. Strandhagen and M. Holm, Towards smart production planning and control; a conceptual framework linking planning environment characteristics with the need for smart production planning and control. Ann. Rev. Control 53 (2022) 370–381. [CrossRef] [Google Scholar]
  • T. Ramesh, U. Hariram, A. Srimagal and J.K. Sahu, Applications of light emitting diodes and their mechanism for food preservation. J. Food Saf. (2023) e13040. [CrossRef] [Google Scholar]
  • C. Rout, A. Paul, R.S. Kumar, D. Chakraborty and A. Goswamia, Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Clean. Prod. 272 (2020) 122170. [CrossRef] [Google Scholar]
  • T. Roy and K.S. Chaudhuri, A production-inventory model under stock-dependent demand, Weibull distribution deterioration and shortage. Int. Trans. Oper. Res. 16 (2009) 325–346. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Sahoo, Transportation problem in Fermatean fuzzy environment. RAIRO: OR 57 (2023) 145–156. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Sarkar and B.D. Chung, Flexible work-in-process production system in supply chain management under quality improvement. Int. J. Prod. Res. 58 (2020) 3821–3838. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Sarkar, B. Ganguly and L.E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management. Int. J. Prod. Econ. 231 (2021) 107867. [CrossRef] [Google Scholar]
  • M. Ullah, I. Asghar, M. Zahid, M. Omair, A. Alarjani and B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J. Clean. Prod. 290 (2021) 125609. [CrossRef] [Google Scholar]
  • A.S.H. Kugele and B. Sarkar, Reducing carbon emissions of a multi-stage smart production for biofuel towards sustainable development. Alex. Eng. J. 70 (2023) 93–113. [CrossRef] [Google Scholar]
  • M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374. [Google Scholar]
  • M. Sebatjane, The impact of preservation technology investments on lot-sizing and shipment strategies in a three-echelon food supply chain involving growing and deteriorating items. Oper. Res. Perspect. 9 (2022) 100241. [Google Scholar]
  • M. Sharma, A. Dhir, H. AlKatheeri, M. Khan and M.M. Ajmal, Greening of supply chain to drive performance through logical integration of supply chain resources. Bus. Strategy Environ. (2023). DOI: 10.1002/bse.3340 [Google Scholar]
  • D. Tan, M. Suvarna, Y.S. Tan, J. Liand X. Wang, A three-step machine learning framework for energy profiling, activity state pblackiction and production estimation in smart process manufacturing. Appl. Energy 291 (2021) 116808. [CrossRef] [Google Scholar]
  • M. Ullah, B. Sarkar and I. Asghar, Effects of preservation technology investment on waste generation in a two-echelon supply chain model. Mathematics 7 (2019) 189. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Wang and L. Jiang, Inventory policy for deteriorating seasonal products with price and ramp-type time dependent demand. RAIRO: OR 49 (2015) 865–878. [CrossRef] [EDP Sciences] [Google Scholar]
  • B. Sarkar, M. Tayyab, N. Kim and M.S. Habib, Optimal production delivery policies for supplier and manufacturer in a constrained closed-loop supply chain for returnable transport packaging through metaheuristic approach. Comp. Indust. Eng. 135 (2019) 987–1003. [CrossRef] [Google Scholar]
  • Y. Yan, F. Yao and J. Sun, Manufacturer’s cooperation strategy of closed-loop supply chain considering corporate social responsibility. RAIRO: OR 55 (2021) 3639–3659. [CrossRef] [EDP Sciences] [Google Scholar]
  • P. Zhao, Q. Deng, J. Zhou, W. Han, G. Gong and C. Jiang, Optimal production decisions for remanufacturing end-of-life products under quality uncertainty and a carbon cap-and-trade policy. Comput. Ind. Eng. 162 (2021) 107646. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.