Open Access
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2315 - 2330
Published online 19 September 2023
  • P. Ahmadpour-Samani, H. Arman, A. Foukerdi, A. Hadi-Vencheh and R.K. Mavi, The equity theory: a quantitative perspective using data envelopment analysis. RAIRO: Oper. Res. 56 (2022) 3711–3732. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E.L. Altman, Financial ratios, discriminant analysis and the prediction of corporate failure. J. Finan. 23 (1968) 589–609. [CrossRef] [Google Scholar]
  • J. Antunes, A. Hadi-Vencheh, A. Jamshidi, Y. Tan and P. Wanke, Bank efficiency estimation in China: DEA-RENNA approach. Ann. Oper. Res. 315 (2022) 1373–1398. [CrossRef] [Google Scholar]
  • H. Arman, A. Jamshidi and A. Hadi-Vencheh, Eco-innovation analysis: a data envelopment analysis methodology. Environ. Technol. Innov. 23 (2021) 101770. [CrossRef] [Google Scholar]
  • J. Arroyave, A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: evidence from Colombia. J. Int. Stud. 11 (2018) 273–287. [CrossRef] [Google Scholar]
  • H. Azizi, A note on data envelopment analysis with missing values: an interval DEA approach. Int. J. Adv. Manuf. Technol. 66 1817–1823. [Google Scholar]
  • H. Azizi and H.G. Ajirlu, Measurement of the worst practice of decision-making units in the presence of non-discretionary factors and imprecise data. Appl. Math. Model. 35 (2011) 4149–4156. [CrossRef] [MathSciNet] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiency in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [CrossRef] [Google Scholar]
  • P. Barnes, The analysis and use of financial ratios: a review article. J. Bus. Finan. Acc. 14 (1987) 449–461. [CrossRef] [Google Scholar]
  • W.H. Beaver, Financial ratios as predictors of failure. J. Acc. Res. 4 (1966) 71–111. [CrossRef] [Google Scholar]
  • W.H. Beaver, Alternative accounting measures as predictors of failure. Acc. Rev. 43 (1968) 113–122. [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–185. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen and J. Zhu, Interval and ordinal data, in Modelling data irregularities and structural complexities in data envelopment analysis, edited by J. Zhu and W. Cook. Springer (2007) 35–62. [CrossRef] [Google Scholar]
  • H.Z. David and Y.C. Peles, Measuring equilibrating forces of financial ratios. Acc. Rev. 68 (1993) 725–747. [Google Scholar]
  • A. Emrouznejad and A.L. Anouze, DEA/C&R: DEA with classification and regression tree: a case of banking efficiency. Expert Syst. 27 (2010) 231–246. [CrossRef] [Google Scholar]
  • A. Emrouznejad and E. Cabanda, An aggregate measure of financial ratios using a multiplicative DEA model. Int. J. Finan. Serv. Manage. 4 (2010) 114–126. [Google Scholar]
  • A. Emrouznejad, A.L. Anouze and E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency for decision making units with negative data, using DEA. Eur. J. Oper. Res. 200 (2010) 297–304. [CrossRef] [Google Scholar]
  • A. Emrouznejad, G.R. Amin, E. Thanassoulis and A.L. Anouze, On the Boundedness of SORM DEA models with negative data. Eur. J. Oper. Res. 206 (2010) 265–268. [CrossRef] [Google Scholar]
  • A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini and M. Tavana, General and multiplicative non-parametric corporate performance models with interval ratio data. Appl. Math. Model. 36 (2012) 5506–5514. [CrossRef] [Google Scholar]
  • M. Esmaeili, An enhance Russell measure in DEA with interval data. Appl. Math. Comput. 219 (2012) 1589–1593. [Google Scholar]
  • J. Fang, C.K.M. Lau, Z. Lu, Y. Tan and H. Zhang, Bank Performance in China: a perspective from bank efficiency, risk-taking and market competition. Pac.-Basin Finan. J. 56 (2019) 290–309. [CrossRef] [Google Scholar]
  • S.R. Farzipoor, Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. Int. J. Adv. Manuf. Technol. 51 (2010) 1243–1250. [CrossRef] [Google Scholar]
  • M. Faulkender, M.J. Flannery, K.W. Hankins and J.M. Smith, Cash flow and leverage adjustments. J. Finan. Econ. 103 (2012) 632–646. [CrossRef] [Google Scholar]
  • A. Fernandez-Castro and P. Smith, Towards a general non-parametric model of corporate performance. Omega 22 (1994) 237–249. [Google Scholar]
  • J.L. Gallizo, F. Jiménez and M. Salvado, Adjusting financial ratios: a Bayesian analysis of the Spanish manufacturing sector. Omega 30 (2002) 185–195. [CrossRef] [Google Scholar]
  • J. Gerami, R. Kiani Mavi, R. Farzipoor Saen and N. Kiani Mavi, A novel network DEA-R model for evaluating hospital services supply chain performance. Ann. Oper. Res. 324 (2023) 1041–1066. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Guo and J. Wu, A complete ranking of DMUs with undesirable outputs using restrictions in DEA models. Math. Comput. Model. 58 (2013) 1102–1109. [CrossRef] [Google Scholar]
  • A. Hadi-Vencheh and A. Esmaeilzadeh, A new super-efficiency model in the presence of negative data. J. Oper. Res. Soc. 64 (2013) 396–401. [CrossRef] [Google Scholar]
  • A. Hadi-Vencheh and R. Kazemi Matin, An application of IDEA to wheat farming efficiency. Agr. Econ. 42 (2011) 487–493. [CrossRef] [Google Scholar]
  • A. Hadi-Vencheh, A. Hatami-Marbini, Z. Ghelej Beigi and K. Gholami, An inverse optimization model for imprecise data envelopment analysis. Optimization 64 (2015) 2441–2454. [CrossRef] [MathSciNet] [Google Scholar]
  • G.R. Jahanshahloo, R. Kazemi Matin and A. Hadi-Vencheh, On FDH efficiency analysis with interval data. Appl. Math. Comput. 159 (2004) 47–55. [MathSciNet] [Google Scholar]
  • O.M. Joy and O.J. Tollefson, On the financial applications of discriminant analysis. J. Finan. Quant. Anal. 10 (1957) 723–739. [Google Scholar]
  • R. Kazemi Matin, G.R. Jahanshahloo and A. Hadi-Vencheh, Inefficiency evaluation with an additive DEA model under imprecise data, an application on IAUK departments. J. Oper. Res. Soc. Jpn. 50 (2007) 163–177. [Google Scholar]
  • K. Khalili-Damghani, M. Tavana and E. Haji-Saami, A data envelopment analysis model with interval data and undesirable output for combine cycle power plant performance assessment. Expert Syst. App. 42 (2015) 760–773. [CrossRef] [Google Scholar]
  • M. Khodadadipour, A. Hadi-Vencheh, M.H. Behzadi and M. Rostamy-Malkhalifeh, Undesirable factors in stochastic DEA cross-efficiency evaluation: an application to thermal power plant energy efficiency. Econ. Anal. Policy 69 (2021) 613–628. [CrossRef] [Google Scholar]
  • A. Khoshroo, M. Izadikhah and A. Emrouznejad, Improving energy efficiency considering reduction of CO2 emission of turnip production: a novel data envelopment analysis model with undesirable output approach. J. Cleaner Prod. 187 (2018) 605–615. [CrossRef] [Google Scholar]
  • C.F. Lee and C. Wu, Expectation formation and financial ratio adjustment processes. Acc. Rev. 63 (1988) 292–306. [Google Scholar]
  • M.L. Lemmon and J.F. Zender, Debt capacity and tests of capital structure theories. J. Finan. Quant. Anal. 45 (2010) 1161–1187. [CrossRef] [Google Scholar]
  • B. Lev, Industry averages as targets for financial ratios. J. Acc. Res. 7 (1969) 290–299. [CrossRef] [Google Scholar]
  • D. Li, M.Q. Wang and C. Lee, Processing based on two-stage data envelopment analysis with undesirable inputs. J. Cleaner Prod. 242 (2020) 118279. [CrossRef] [Google Scholar]
  • C.A.K. Lovell, Measuring the macroeconomic performance of the Taiwanese economy. Int. J. Prod. Econ. 39 (1995) 165–178. [CrossRef] [Google Scholar]
  • M.R. Mozaffari, F. Dadkhah, J. Jablonsky and P.F. Wanke, Finding efficient surfaces in DEA-R models. Appl. Math. Comput. 386 (2020) 125497. [MathSciNet] [Google Scholar]
  • O.B. Olesen, N.C. Petersen and V.V. Podinovski, Efficiency measures and computational approaches for data envelopment analysis models with ratio inputs and outputs. Eur. J. Oper. Res. 261 (2017) 640–655. [CrossRef] [Google Scholar]
  • M.C.A.S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: A directional distance approach applied to bank branches. J. Oper. Res. Soc. 55 (2004) 1111–1121. [CrossRef] [Google Scholar]
  • J. Puri and S.P. Yadav, A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector. Expert Syst. App. 40 (2013) 1473–1450. [Google Scholar]
  • J. Puri, S.P. Yadav and H. Garg, A new multi-component DEA approach using common set of weights methodology and imprecise data: an application to public sector banks in India with undesirable and share resources. Ann. Oper. Res. 259 (2017) 351–388. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Scheel, Undesirable outputs in efficiency evaluations. Eur. J. Oper. Res. 132 (2001) 400–410. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Modelling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 142 (2002) 16–20. [CrossRef] [Google Scholar]
  • J.A. Sharpe, W.B. Liu and W. Meng, A modified slacks-based measure model for data envelopment analysis with natural negative outputs and inputs. J. Oper. Res. Soc. 58 (2007) 1672–1677. [CrossRef] [Google Scholar]
  • R.K. Shiraz, V. Charles and L. Jalalzadeh, Fuzzy rough DEA model: a possibility and expected value approaches. Expert Syst. App. 41 (2014) 434–444. [CrossRef] [Google Scholar]
  • Y.G. Smirlis, E.K. Maragos and D.K. Despotis, Data envelopment analysis with missing values: an interval DEA approach. Appl. Math. Comput. 177 (2006) 1–10. [MathSciNet] [Google Scholar]
  • Y. Tan and C. Floros, Bank profitability and inflation: the case of China. J. Econ. Stud. 39 (2012) 675–696. [CrossRef] [Google Scholar]
  • Y.M. Wang, R. Greatbanks and J.B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. [Google Scholar]
  • G. Whittington, Some basic properties of accounting ratios. J. Bus. Finan. Acc. 7 (1980) 219–223. [CrossRef] [Google Scholar]
  • C. Wu and S.K. Ho, Financial ratio adjustment: industry-wide effects or strategic management. Rev. Quant. Finan. Acc. 9 (1997) 71–88. [CrossRef] [Google Scholar]
  • J. Wu, J. Sun, M. Song and L. Liang, A ranking method for DMUs with interval data based on DEA cross-efficiency evaluation and TOPSIS. J. Syst. Sci. Syst. Eng. 22 (2013) 191–201. [Google Scholar]
  • J. Xu, B. Li and D. We, Rough data envelopment analysis and its application to supply chain performance evaluation. Int. J. Prod. Econ. 122 (2009) 628–638. [CrossRef] [Google Scholar]
  • W. Xu, Z. Xiao, X. Dang, D. Yang and X. Yang, Financial ratio selection for business failure prediction using soft set theory. Knowl.-Based Syst. 63 (2014) 59–63. [CrossRef] [Google Scholar]
  • F.F. Ye, L.H. Yang, Y.M. Wang and L. Chen, An environmental pollution management method based on extended belief rule base and data envelopment analysis under interval uncertainty. Computers Ind. Eng. 144 (2020) 106454. [CrossRef] [Google Scholar]
  • M. Zerafat Angiz, A. Emrouznejad and A. Mustafa, Fuzzy assessment of performance of a decision making units using DEA: a non-radial approach. Expert Syst. App. 37 (2010) 5153–5157. [CrossRef] [Google Scholar]
  • M. Zerafat Angiz, A. Emrouznejad and A. Mustafa, Fuzzy data envelopment analysis: a discrete approach. Expert Syst. App. 39 (2012) 2263–2269. [CrossRef] [Google Scholar]
  • W. Zhu, M. Xu and C. Cheng, Dealing with undesirable outputs in DEA: an aggregation method for a common set of weights. J. Oper. Res. Soc. 71 (2020) 579–588. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.