Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
|
|
---|---|---|
Page(s) | 2687 - 2702 | |
DOI | https://doi.org/10.1051/ro/2023123 | |
Published online | 20 October 2023 |
- D. Azagra and J. Ferrera, Inf-convolution and regularization of convex functions on Riemannian manifolds of non-positive curvature. Rev. Mat. Complut., in press (2005). [Google Scholar]
- A. Barani and M.R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds. J. Math. Anal. Appl. 328 (2007) 767–779. [CrossRef] [MathSciNet] [Google Scholar]
- A. Barani and M.R. Pouryayevali, Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70 (2009) 1850–1861. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ben-Israel, B. Mond, What is invexity?. J. Aust. Math. Soc. 28 (1986) 1–9. [CrossRef] [Google Scholar]
- G. Bhatia and R.R. Sahay, Strict global minimizers and higher-order generalized strong invexity in multi-objective optimization. J. Inequal. Appl. 2013 (2013) 31. [CrossRef] [Google Scholar]
- R. Correa, A. Jofre and L. Thibault, Characterization of lower semi continuous convex functions. Proc. Ame. Soc. 116 (1992) 67–72. [CrossRef] [Google Scholar]
- L. Fan, S. Liu and S. Gao, Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279 (2003) 276–289. [CrossRef] [MathSciNet] [Google Scholar]
- G.R. Garzon, R.O. Gomez, A.R. Lizana and B.H. Jimenez, Optimality and duality on Riemannian manifolds. Taiwanese J. Math. 22 (2018) 1245–1259. [MathSciNet] [Google Scholar]
- M.A. Hanson, On sufficiency of Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981) 545–550. [CrossRef] [MathSciNet] [Google Scholar]
- A. Hussain and A. Iqbal, Quasi strongly E-convex functions with applications. Nonlinear Funct. Anal. Appl. 26 (2021) 1077–1089. [Google Scholar]
- A. Iqbal and I. Ahmad, Strong geodesic convex functions of order m. Numer. Funct. Anal. Optim. 40 (2019) 1840–1846. [CrossRef] [MathSciNet] [Google Scholar]
- A. Iqbal and A. Hussain, Nonlinear programming problem for strongly E-invex sets and strongly E-preinvex functions. RAIRO: Oper. Res. 56 (2022) 1397–1410. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Iqbal, I. Ahmad and S. Ali, Strong geodesic α-preinvexity and Invariant α-monotonicity on Riemannian manifolds. Numer. Funct. Anal. Optim. 31 (2010) 1342–1361. [CrossRef] [MathSciNet] [Google Scholar]
- A. Iqbal, S. Ali and I. Ahmad, Some properties of geodesic semi E-convex functions. Nonlinear Anal. 74 (2011) 6805–6813. [CrossRef] [MathSciNet] [Google Scholar]
- S. Karamardian and S. Schaible, Seven kinds of monotone maps. J. Optim. Theory Appl. 66 (1990) 37–46. [Google Scholar]
- S.Z. Nemeth, Monotone vector fields. Publ. Math. 54 (1999) 437–449. [Google Scholar]
- M.A. Noor, On generalized preinvex functions and monotonicities. J. Math. Inequalities 5 (2004) 110. [Google Scholar]
- R. Pini, Convexity along curves and invexity. Optimization 29 (1994) 301–309. [CrossRef] [MathSciNet] [Google Scholar]
- R. Pini and C. Singh, Generalized convexity and generalized monotonicity. J. Inform. Optim. Sci. 20 (1999) 215–233. [MathSciNet] [Google Scholar]
- E.A. Papa Quiroz and P.R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard Manifolds. J. Convex Anal. 16 (2009) 49–69. [MathSciNet] [Google Scholar]
- E.A. Papa Quiroz and P.R. Oliveira, Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM: Control Optim. Calc. Var. 16 (2012) 483–500. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E.A. Papa Quiroz, N. Baygorrea and N. Maculan, Inexact proximal point methods for multiobjective quasiconvex minimization on hadamard manifolds. J. Optim. Theory Appl. 186 (2020) 879–898. [CrossRef] [MathSciNet] [Google Scholar]
- T. Rapcsak, Smooth Nonlinear Optimization in Rn. Kluwer Academic Publishers, Dordrecht (1997). [Google Scholar]
- L. Serge, Fundamentals of differential geometry, in Graduate Texts in Mathematics. Springer, New York (1999). [Google Scholar]
- C. Udriste, Convex Functions and Optimization Metheds on Riemannian Manifolds. Math. Appl. Vol. 297. Kluwer Acadmic, New York (1994). [CrossRef] [Google Scholar]
- X.M. Yang, X.Q. Yang and K.L. Teo, Generalized invexity and generalized invariant monotonicity. J. Optim. Theory Appl. 117 (2003) 607–625. [CrossRef] [MathSciNet] [Google Scholar]
- W.H. Yang, L.H. Zhang and R. Song, Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10 (2014) 415–434. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.