Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2585 - 2600
DOI https://doi.org/10.1051/ro/2023124
Published online 09 October 2023
  • H.T. Banks and M.Q. Jacobs, A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970) 246–272. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Bedregal and R. Santiago, Some continuity notions for interval functions and representation. Comput. Appl. Math. 32 (2013) 435–446. [CrossRef] [MathSciNet] [Google Scholar]
  • J.V. Burke and M.C. Ferris, Characterization of solution sets of convex programs. Oper. Res. Lett. 10 (1991) 57–60. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Chalco-Cano, A. Rufian-Lizana, H. Roman-Flores and M.D. Jimenez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219 (2013) 49–67. [CrossRef] [Google Scholar]
  • P. Gordan, Ueber die Aufl¨osung linearer Gleichungen mit reellen Coefficienten. Math. Ann. 6 (1873) 23–28. [CrossRef] [MathSciNet] [Google Scholar]
  • V.I. Ivanov, Characterizations of pseudoconvex functions and semistrictly quasiconvex ones. J. Global Optim. 57 (2013) 677–693. [CrossRef] [MathSciNet] [Google Scholar]
  • V.I. Ivanov, Characterizations of solution sets of differentiable quasiconvex programming problems. J. Optim. Theory Appl. 181 (2019) 144–162. [CrossRef] [MathSciNet] [Google Scholar]
  • V.I. Ivanov, Second-order optimality conditions and Lagrange multiplier characterizations of the solution set in quasiconvex programming. Optimization 69 (2020) 637–655. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar and X.Q. Yang, Characterizing the solution sets of pseudo-linear programs. J. Optim. Theory Appl. 87 (1995) 747–755. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar, G.M. Lee and N. Dinh, Lagrange multiplier conditions characterizing optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 123 (2004) 83–103. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar, G.M. Lee and N. Dinh, Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174 (2006) 1380–1395. [CrossRef] [Google Scholar]
  • K.K. Lai, A. Shahi and S.K. Mishra, On semidifferentiable interval-valued programming problems. J. Ineq. Appl. 2021 (2021) 1–18. [CrossRef] [Google Scholar]
  • K.K. Lai, S.K. Mishra, M. Hassan, J. Bisht and J.K. Maurya, Duality results for interval-valued semiinfinite optimization problems with equilibrium constraints using convexificators. J. Inequal. Appl. 128 (2022). [Google Scholar]
  • K.K. Lai, S.K. Mishra, S.K. Singh and M. Hassan, Stationary conditions and characterizations of solution sets for intervalvalued tightened nonlinear problems. Mathematics 10 (2022) 2763. [CrossRef] [Google Scholar]
  • K.K. Lai, S.K. Mishra, J. Bisht and M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions. Symmetry 14 (2022) 771. [CrossRef] [Google Scholar]
  • K.K. Lai, J. Bisht, N. Sharma and S.K. Mishra, Hermite-Hadamard type fractional inclusions for interval-valued preinvex functions. Mathematics 10 (2022) 264. [CrossRef] [Google Scholar]
  • K.K. Lai, S.K. Mishra, J. Bisht and M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions. Symmetry 14 (2022) 771. [CrossRef] [Google Scholar]
  • O.L. Mangasarian, A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7 (1988) 21–26. [Google Scholar]
  • O.L. Mangasarian, Nonlinear Programming. Classics in Applied Mathematics. SIAM, Philadelphia (1994). [CrossRef] [Google Scholar]
  • O.L. Mangasarian and S. Fromovitz, The fritz john necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17 (1967) 37–47. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Mishra and B.B. Upadhyay, Lagrange multiplier characterizations of solution sets of constrained nonsmooth pseudolinear optimization problems. J. Optim. Theory Appl. 160 (2014) 763–777. [CrossRef] [MathSciNet] [Google Scholar]
  • R.E. Moore, Methods and Applications of Interval Analysis. SIAM Philadelphia (1979). [Google Scholar]
  • A. Neumaier, Introduction to Numerical Analysis. Cambridge University Press (2001). [CrossRef] [Google Scholar]
  • J.-P. Penot, Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117 (2003) 627–636. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Rohn and J. Kreslová, Linear interval inequalities. Linear Multilinear Algebra 38 (1994) 79–82. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Sharma, S.K. Singh, S.K. Mishra and A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Ineq. Appl. 2021 (2021) 1–15. [CrossRef] [Google Scholar]
  • N. Sisarat, R. Wangkeeree and T. Tanaka, Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps. J. Global Optim. 77 (2020) 273–287. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods Appl. 71 (2009) 1311–1328. [CrossRef] [Google Scholar]
  • S. Suzuki and D. Kuroiwa, Characterizations of solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. J. Global Optim. 62 (2015) 431–441. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Treanta, Characterization results of solutions in interval-valued optimization problems with mixed constraints. J. Global Optim. (2021) 1–14. [Google Scholar]
  • H.C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176 (2007) 46–59. [CrossRef] [Google Scholar]
  • H.C. Wu, On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008) 299–316. [CrossRef] [MathSciNet] [Google Scholar]
  • H.C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49–60. [CrossRef] [Google Scholar]
  • J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014) 607–631. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.