Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
|
|
---|---|---|
Page(s) | 2783 - 2798 | |
DOI | https://doi.org/10.1051/ro/2023144 | |
Published online | 31 October 2023 |
- A. Alhevaz, M. Baghipur, H.A. Ganie and K.C. Das, On the Aα-spectral radius of connected graphs. Ars Math. Contemp. 23 (2023). [Google Scholar]
- P. Bhunia, S. Bag and K. Paul, Bounds for eigenvalues of the adjacency matrix of a graph. J. Interdiscip. Math. 22 (2019) 415–431. [CrossRef] [Google Scholar]
- Y. Chen, D. Li and J. Meng, On the second largest Aα-eigenvalues of graphs. Linear Algebra Appl. 580 (2019) 343–358. [CrossRef] [MathSciNet] [Google Scholar]
- S.M. Cioabă, Sums of powers of the degrees of a graph. Discrete Math. 306 (2006) 1959–1964. [CrossRef] [MathSciNet] [Google Scholar]
- P. Csikvári, Note on the sum of the smallest and largest eigenvalues of a triangle-free graph. Linear Algebra Appl. 650 (2022) 92–97. [CrossRef] [MathSciNet] [Google Scholar]
- D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts, Cambridge University Press (2009). [CrossRef] [Google Scholar]
- Ch. Das, Sharp bounds for the sum of the squares of the degrees of a graph. Kragujev. J. Math. 25 (2003) 19–41. [Google Scholar]
- K.Ch. Das, Maximizing the sum of the squares of the degrees of a graph. Discrete Math. 285 (2004) 57–66. [CrossRef] [MathSciNet] [Google Scholar]
- K. Das, K. Xu and J. Nam, Zagreb indices of graphs. Front. Math. China 10 (2015) 567–582. [CrossRef] [MathSciNet] [Google Scholar]
- J. Ebrahimi, B. Mohar, V. Nikiforov and A.S. Ahmady, On the sum of two largest eigenvalues of a symmetric matrix. Linear Algebra Appl. 429 (2008) 2781–2787. [CrossRef] [MathSciNet] [Google Scholar]
- M.N. Ellingham and X. Zha, The spectral radius of graphs on surfaces. J. Comb. Theory Ser. B 78 (2000) 45–56. [CrossRef] [Google Scholar]
- K. Goldberg, Principal sub-matrices of a full-rowed non-negative matrix. J. Res. Natl. Bur. Stand. Sect. B Math. Math. Phys. 63B (1959) 19–20. [CrossRef] [Google Scholar]
- W. Haemers, Eigenvalue Techniques in Design and Graph Theory, Vol. 121. Mathematich Centrum, Amsterdan (1980). [Google Scholar]
- W.H. Haemers, Hoffman’s ratio bound. Linear Algebra Appl. 617 (2021) 215–219. [CrossRef] [MathSciNet] [Google Scholar]
- A.J. Hoffman, P. Wolfe and M. Hofmeister, A note on almost regular matrices. Linear Algebra Appl. 226–228 (1995). [Google Scholar]
- Y. Hong, A bound on the spectral radius of graphs. Linear Algebra Appl. 108 (1988) 135–139. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Hong, J. Shu and K. Fang, A sharp upper bound of the spectral radius of graphs. J. Comb. Theory Ser. B 81 (2001) 177–183. [CrossRef] [Google Scholar]
- R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press (2013). [Google Scholar]
- R. Kumar, Bounds for eigenvalues of a graph. J. Math. Inequal. 4 (2010) 399–404. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lin, J. Xue and J. Shu, On the Aα-spectra of graphs. Linear Algebra Appl. 556 (2018) 210–219. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lin, X. Huang and J. Xue, A note on the Aα-spectral radius of graphs. Linear Algebra Appl. 557 (2018) 430–437. [CrossRef] [MathSciNet] [Google Scholar]
- S. Liu, K.C. Das and J. Shu, On the eigenvalues of Aα-matrix of graphs. Discrete Math. 343 (2020) 111917. [CrossRef] [MathSciNet] [Google Scholar]
- S. Liu, K.C. Das, S. Sun and J. Shu, On the least eigenvalue of Aα-matrix of graphs. Linear Algebra Appl. 586 (2020) 347–376. [CrossRef] [MathSciNet] [Google Scholar]
- V. Nikiforov, The smallest eigenvalue of kr-free graphs. Discrete Math. 306 (2006) 612–616. [CrossRef] [MathSciNet] [Google Scholar]
- V. Nikiforov, Merging the A- and Q- spectral theories. Appl. Anal. Discret. Math. 11 (2017) 81–107. [CrossRef] [Google Scholar]
- V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the Aα-spectra of trees. Linear Algebra Appl. 520 (2017) 286–305. [CrossRef] [MathSciNet] [Google Scholar]
- S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The zagreb indices 30 years after. Croat. Chem. Acta 76 (2003) 113–124. [Google Scholar]
- S. Pirzada, Two upper bounds on the Aα-spectral radius of a connected graph. Commun. comb. optim. 7 (2022) 53–57. [MathSciNet] [Google Scholar]
- K. Tamara and S. Zoran, Some spectral inequalities for triangle-free regular graphs. Filomat 27 (2013) 1561–1567. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang, D. Wong and F. Tian, Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees. Linear Algebra Appl. 590 (2020) 210–223. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhang and Y. Zhu, Some spectral properties of Aα-matrix. Discrete Math. Algorithms Appl. 11 (2019) 1950070. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.