Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
|
|
---|---|---|
Page(s) | 3073 - 3092 | |
DOI | https://doi.org/10.1051/ro/2023166 | |
Published online | 30 November 2023 |
- P. Artzner, F. Delbaen, J.M. Eber, D. Heath and H. Ku, Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152 (2007) 5–22. [CrossRef] [MathSciNet] [Google Scholar]
- S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation. Rev. Financ. Stud. 23 (2010) 2970–3016. [CrossRef] [Google Scholar]
- T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems. Available at SSRN 1694759 (2010). [Google Scholar]
- T. Björk, A. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion. Math. Financ. 24 (2014) 1–24. [CrossRef] [Google Scholar]
- K. Boda and J.A. Filar, Time consistent dynamic risk measures. Math. Methods Oper. Res. 63 (2006) 169–186. [CrossRef] [MathSciNet] [Google Scholar]
- X.Y. Cui, D. Li, S.Y. Wang and S.S. Zhu, Better than dynamic mean-variance: Time inconsistency and free cash flow stream. Math. Financ. 22 (2012) 346–378. [CrossRef] [Google Scholar]
- X.Y. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection. IEEE Trans. Automat. Contr. 59 (2014) 1833–1844. [CrossRef] [Google Scholar]
- X.Y. Cui, D. Li and Y. Shi, Self-coordination in time inconsistent stochastic decision problems: A planner-doer game framework. J. Econ. Dyn. Control 75 (2017) 91–113. [CrossRef] [Google Scholar]
- D. Dang and P.A. Forsyth, Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach. Eur. J. Oper. Res. 250 (2016) 827–841. [CrossRef] [Google Scholar]
- D. Fudenberg and D.K. Levine, A dual-self model of impulse control. Am. Econ. Rev. 96 (2006) 1449–1476. [CrossRef] [PubMed] [Google Scholar]
- D. Fudenberg and D.K. Levine, Timing and self-control. Econometrica 80 (2012) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
- S.R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences. J. Financ. Econ. 84 (2007) 2–39. [Google Scholar]
- F. Gul and W. Pesendorfer, Temptation and self-control. Econometrica 69 (2001) 1403–1435. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Strotz, Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23 (1956) 165–180. [Google Scholar]
- R.H. Thaler, Some empirical evidence on dynamic inconsistency. Econ. Lett. 8 (1981) 201–207. [CrossRef] [Google Scholar]
- J. Wang and P.A. Forsyth, Continuous time mean variance asset allocation: A time-consistent strategy. Eur. J. Oper. Res. 209 (2011) 184–201. [CrossRef] [Google Scholar]
- X.Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optim. 42 (2000) 19–33. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.