Open Access
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
Page(s) 3093 - 3116
Published online 30 November 2023
  • M.A. Abo-Sinna and I.A. Baky, Interactive balanced space approach for solving multi-level multi-objective programming problems. Inf. Sci. 177 (2007) 3397–3410. [CrossRef] [Google Scholar]
  • F. Alkaabneh, A. Diabat and H.O. Gao, Benders decomposition for the inventory vehicle routing problem with perishable products and environmental costs. Comput. Oper. Res. 113 (2020) 104751. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Armstrong, S. Gao and L. Lei, A zero-inventory production and distribution with a fixed customer sequence. Ann. Oper. Res. 159 (2008) 395–414. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Asghari and S.M.J. Mirzapour Al-e-hashem, A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources. Transp. Res. Part E: Logistics Transp. Rev. 134 (2020) 101815. [CrossRef] [Google Scholar]
  • M. Asghari, S.M.J. Mirzapour Al-e-hashem and M.A. Dulebenets, Transformation and linearization techniques in optimization: a state-of-the-art survey. Mathematics 10 (2022) 283. [CrossRef] [Google Scholar]
  • F.B. Bard, J. Plummer and J.C. Sourie, A bilevel programming approach to determining tax credits for biofuel production. J. Oper. Res. 120 (2000) 30–46. [CrossRef] [Google Scholar]
  • L. Brotcorne, M. Labbé, P. Marcotte and G. Savard, Join design and pricing on a network. Oper. Res. 56 (2008) 1104–1115. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Cakici, S.J. Mason and M.E. Kurz, Multi-objective analysis of an integrated supply chain scheduling problem. Int. J. Prod. Res. 50 (2012) 2671–2685. [Google Scholar]
  • D. Cao and M. Chen, Capacitated plan selection in a decentralized manufacturing environment: a bi-level optimization approach. Eur. J. Oper. Res. 169 (2006) 97–110. [CrossRef] [Google Scholar]
  • Y.-C. Chang, V.C. Li and C.-J. Chiang, An ant colony optimization heuristic for an integrated production and distribution scheduling problem. Eng. Optim. 4 (2013) 503–520. [Google Scholar]
  • Z.-L. Chen and G. Pundoor, Integrated order scheduling and packing. Prod. Oper. Manage. 18 (2009) 672–692. [CrossRef] [Google Scholar]
  • G.B. Dantzing and J.H. Ramsar, The truck dispatching problem. Manage. Sci. 6 (1959) 80–91. [CrossRef] [Google Scholar]
  • S. DeNegre, Interdiction and discrete bilevel linear programming. Ph.D. thesis, Lehigh University (2011). [Google Scholar]
  • P. Farghadani-Chaharsooghi, P. Kamranfar, M.S.M. Al-e-Hashem and Y. Rekik, A joint production-workforce-delivery stochastic planning problem for perishable items. Int. J. Prod. Res. 60 (2022) 6148–6172. [CrossRef] [Google Scholar]
  • A. Frangioni, On a new class of bilevel programming problems and its use for reformulating mixed-integer problems. Eur. J. Oper. Res. 82 (1995) 615–646. [CrossRef] [Google Scholar]
  • M. Ganji, H. Kazemipoor, S.M. Molana and S.M. Sajadi, A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time window. J. Cleaner Prod. 259 (2020) 120824. [CrossRef] [Google Scholar]
  • J.M. Garcia and S. Lozano, Production and delivery scheduling problem with time windows. Comput. Ind. Eng. 48 (2005) 733–742. [CrossRef] [Google Scholar]
  • M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flow-shop and job-shop scheduling. Math. Oper. Res. 1 (1976) 117–129. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Guo, L. Shi, L. Chen and Y. Liang, A harmony search-based memetic optimization model for integrated production and transportation scheduling in MTO manufacturing. Omega 66 (2015) 327–343. [Google Scholar]
  • Z. Guo, J. Yang, S.Y.S. Leung and L. Shi, A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Appl. Soft Comput. 42 (2016) 215–228. [CrossRef] [Google Scholar]
  • A. Hassanzadeh, M. Rasti-Barzoki and H. Khosroshahi, Two new meta-heuristics for a bi-objective supply chain scheduling problem in flow-shop environment. Appl. Soft Comput. 49 (2016) 335–351. [CrossRef] [Google Scholar]
  • C.M. Joo and B.S. Kim, Rule-based meta-heuristics for integrated scheduling of unrelated parallel machines, batches, and heterogeneous delivery trucks. Appl. Soft Comput. 53 (2016) 457–476. [Google Scholar]
  • I. Kacem, S. Hammadi and P. Borne, Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans. Syst. Man Cybern. Part C (App. Rev.) 32 (2002) 1–13. [CrossRef] [Google Scholar]
  • Y. Kergosien, M. Gendreau and J.-C. Billaut, A Benders decomposition-based heuristic for a production and outbound distribution scheduling problem with strict delivery constraints. Eur. J. Oper. Res. 262 (2017) 287–298. [CrossRef] [Google Scholar]
  • C.-L. Li and G. Vairaktarakis, Coordinating production and distribution of jobs with bundling operations. IIE Trans. 39 (2007) 203–215. [CrossRef] [Google Scholar]
  • P. Liu and X. Lu, Integrated production and job delivery scheduling with an availability constraint. Int. J. Prod. Econ. 176 (2016) 1–6. [CrossRef] [Google Scholar]
  • C. Low, C.-M. Chang, R.-K. Li and C.-L. Huang, Coordination of production scheduling and delivery problems with heterogeneous fleet. Int. J. Prod. Econ. 153 (2014) 139–148. [CrossRef] [Google Scholar]
  • A. Majidi, P. Farghadani-Chaharsooghi and S.M.J. Mirzapour Al-e-Hashem, Sustainable pricing-production-workforce-routing problem for perishable products by considering demand uncertainty; a case study from the dairy industry. Transp. J. 61 (2022) 60–102. [CrossRef] [Google Scholar]
  • F. Marandi and S.H. Zegordi, Integrated production and distribution scheduling for perishable products. Trans. E: Ind. Eng. 24 (2017) 2105–2118. [Google Scholar]
  • S. Mohammadi, S.M.J. Mirzpour Al-e-Hashem and Y. Rekik, An integrated production scheduling and delivery route planning with multi-purpose machines: a case study from a furniture manufacturing company. Int. J. Prod. Econ. 219 (2020) 347–359. [CrossRef] [Google Scholar]
  • J. Moore and J.F. Bard, The mixed-integer linear bilevel programming problem. Oper. Res. 38 (1990) 911–921. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Noroozi, M. Mahdavi Mazdeh, M. Heidari and M. Rasti-Barzoki, Coordinating order acceptance and integrated production–distribution scheduling with batch delivery considering third party logistics distribution. J. Manuf. Syst. 46 (2018) 29–45. [CrossRef] [Google Scholar]
  • U. Saglam and A. Banerjee, Integrated multi-product batch production and truck shipment scheduling under different shipping policies. Omega 74 (2017) 70–81. [Google Scholar]
  • F. Salehi, S.M.J. Mirzapour Al-e-Hashem and S.M. Moattar Husseini, A 2-phase interdependent methodology for sustainable project portfolio planning in the pharmaceutical industry. Comput. Ind. Eng. 174 (2022) 108794. [CrossRef] [Google Scholar]
  • F. Salehi, S.M.J. Mirzapour Al-e-Hashem, S.M. Moattar Husseini and S.H. Ghodsypour, A bi-level multi-follower optimization model for R&D project portfolio: an application to a pharmaceutical holding company. Ann. Oper. Res. 323 (2023) 331–360. [CrossRef] [PubMed] [Google Scholar]
  • H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Solina and G. Mirabelli, Integrated production–distribution scheduling with energy considerations for efficient food supply chains. Proc. Comput. Sci. 180 797–806. [Google Scholar]
  • A. Soukhal, A. Oulamara and P. Martineau, Complexity of flow-shop scheduling problems with transportation constraints. Eur. J. Oper. Res. 161 (2005) 32–41. [CrossRef] [Google Scholar]
  • K.E. Stecke and X. Zhao, Production and transportation integration for a make-to-order manufacturing company with a commit-to-delivery business mode. Manuf. Serv. Oper. Manage. 9 (2007) 206–224. [CrossRef] [Google Scholar]
  • C.A. Ullrich, Integrated machine scheduling and vehicle routing with time-windows. Eur. J. Oper. Res. 227 (2013) 152–165. [CrossRef] [Google Scholar]
  • G. Wang, Integrated supply chain scheduling of procurement, production, and distribution under spillover effects. Comput. Oper. Res. 126 (2021) 105105. [CrossRef] [Google Scholar]
  • J. Wang, S. Yao, J. Sheng and H. Yang, Minimizing total carbon emission in an integrated machine scheduling and vehicle routing problem. J. Cleaner Prod. 229 (2019) 1004–1017. [CrossRef] [Google Scholar]
  • P. Xu, Three essays on bilevel optimization algorithms and applications. Ph.D. thesis, Iowa State University (2012). [Google Scholar]
  • P. Xu and L. Wang, An exact algorithm for the bilevel mixed-integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41 (2014) 309–318. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Yağmur and S.E. Kesen, A memetic algorithm for joint production and distribution scheduling with due dates. Comput. Ind. Eng. 142 (2020) 106342. [CrossRef] [Google Scholar]
  • G. Zhang and J. Lu, Model and approach of fuzzy bilevel decision-making for logistics planning problem. J. Enterp. Inf. Manage. 20 (2007) 178–197. [CrossRef] [Google Scholar]
  • B. Zeng and Y. An, Solving bilevel mixed-integer problem by reformulations and decomposition. Optimization. 2014 (June 2014) 1–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.