Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
Page(s) 3117 - 3139
DOI https://doi.org/10.1051/ro/2023152
Published online 30 November 2023
  • K. Arun Prakash, M. Suresh and S. Vengataasalam, A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept. Math. Sci. 10 (2016) 177–184. [CrossRef] [MathSciNet] [Google Scholar]
  • K.T. Atanassov, Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999) 1–137. [Google Scholar]
  • J. Bai, W.W. Hager and H. Zhang, An inexact accelerated stochastic ADMM for separable convex optimization. Comput. Optim. App. 81 (2022) 479–518. [CrossRef] [Google Scholar]
  • M.-I. Boloş, I.-A. Bradea and C. Delcea, A fuzzy logic algorithm for optimizing the investment decisions within companies. Symmetry 11 (2019) 186. [CrossRef] [Google Scholar]
  • D. Chakraborty and V.P. Singh, A method to solve separable fuzzy nonlinear programming problem. Int. J. Oper. Res. 29 (2017) 360–375. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Chakraborty, D.K. Jana and T.K. Roy, Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem. Opsearch 52 (2015) 431–471. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Charnes and W.A. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. [CrossRef] [Google Scholar]
  • M.G. Cox, An algorithm for approximating convex functions by means by first degree splines. Comput. J. 14 (1971) 272–275. [CrossRef] [Google Scholar]
  • K.L. Croxton, B. Gendron and T.L. Magnanti, A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49 (2003) 1268–1273. [Google Scholar]
  • C. D’Ambrosio, S. Martello and L. Mencarelli, Relaxations and heuristics for the multiple non-linear separable knapsack problem. Comput. Oper. Res. 93 (2018) 79–89. [CrossRef] [MathSciNet] [Google Scholar]
  • W.S. Dorn, Non-linear programming – a survey. Manage. Sci. 9 (1963) 171–208. [CrossRef] [Google Scholar]
  • D. Dubey and A. Mehra, Linear programming with triangular intuitionistic fuzzy number, in Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology. Atlantis Press (2011) 563–569. [Google Scholar]
  • A. Ebrahimnejad, Sensitivity analysis in fuzzy number linear programming problems. Math. Comput. Modell. 53 (2011) 1878–1888. [CrossRef] [Google Scholar]
  • G. Fasano and J.D. Pintér, Efficient piecewise linearization for a class of non-convex optimization problems: comparative results and extensions, in Modeling and Optimization: Theory and Applications: MOPTA, Bethlehem, PA, USA, August 2017, Selected Contributions. Springer International Publishing (2019) 39–56. [Google Scholar]
  • N.I.M. Gould and P.L. Toint, A quadratic programming bibliography. Numer. Anal. Group Internal Rep. 1 (2000) 32. [Google Scholar]
  • D. Guha and D. Chakraborty, A theoretical development of distance measure for intuitionistic fuzzy numbers. Int. J. Math. Math. Sci. (2010). DOI: 10.1155/2010/949143. [Google Scholar]
  • M. Hu, E.C.C. Tsang, Y. Guo and W. Xu, Fast and robust attribute reduction based on the separability in fuzzy decision systems. IEEE Trans. Cybern. 52 (2021) 5559–5572. [Google Scholar]
  • C.-H. Huang, An effective linear approximation method for separable programming problems. Appl. Math. Comput. 215 (2009) 1496–1506. [MathSciNet] [Google Scholar]
  • Z. Jankova, D.K.J. Jana and P. Dostal, Investment decision support based on interval type-2 fuzzy expert system. Eng. Econ. 32 (2021) 118–129. [CrossRef] [Google Scholar]
  • Z. Jia, X. Gao, X. Cai and D. Han, Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J. Optim. Theory App. 188 (2021) 1–25. [CrossRef] [Google Scholar]
  • A.B. Keha, I.R. de Farias Jr and G.L. Nemhauser, Models for representing piecewise linear cost functions. Oper. Res. Lett. 32 (2004) 44–48. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Khalifa, A study on investment problem in chaos environment. J. Appl. Res. Ind. Eng. 6 (2019) 177–183. [Google Scholar]
  • A. Loay and H. Mittelmann, New algorithm to solve mixed integer quadratically constrained quadratic programming problems using piecewise linear approximation. Mathematics 10 (2022) 198. [CrossRef] [Google Scholar]
  • H. Luo, A unified differential equation solver approach for separable convex optimization: splitting, acceleration and nonergodic rate. Preprint arXiv:2109.13467 (2021). [Google Scholar]
  • Q. Mercier, F. Poirion and J.A. Desideri, Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability. Eng. Optim. 51 (2019) 733–752. [CrossRef] [MathSciNet] [Google Scholar]
  • C.E. Miller, The simplex method for local separable programming, in Recent Advances in Mathematical Programming. McGraw-Hill (1963) 89–100. [Google Scholar]
  • A. Nagoorgani and K. Ponnalagu, A new approach on solving intuitionistic fuzzy linear programming problem. Appl. Math. Sci. 6 (2012) 3467–3474. [MathSciNet] [Google Scholar]
  • S. Narayanamoorthy, P. Jayaraman and D. Meera, Intuitionistic fuzzy linear fractional programming problem using denominator objective restriction method. Int. J. Pure Appl. Math. 114 (2017) 777–789. [CrossRef] [Google Scholar]
  • C.J. Ogbonna and O. Jude, Proposed piecewise linear approximation for tackling non linear programming problem with separable objective function. Int. J. Eng. Appl. Sci. Technol. 4 (2019) 338–341. [Google Scholar]
  • S. Sen and B.B. Pal, A piecewise linear approximation method to solve fuzzy separable quadratic programming problem. Int. J. Adv. Comput. Res. (IJACR) 3 (2013) 230. [Google Scholar]
  • Y. Shen, Y. Zuo and X. Zhang, A faster generalized ADMM-based algorithm using a sequential updating scheme with relaxed step sizes for multiple-block linearly constrained separable convex programming. J. Comput. Appl. Math. 393 (2021) 113503. [CrossRef] [Google Scholar]
  • Y.H. Shin, J.L. Koo and K.H. Roh, An optimal consumption and investment problem with quadratic utility and subsistence consumption constraints: a dynamic programming approach. Math. Modell. Anal. 23 (2018) 627–638. [CrossRef] [Google Scholar]
  • V.P. Singh, An approach to solve fuzzy knapsack problem in investment and business model, in Networked Business Models in the Circular Economy. IGI Global (2020) 154–173. [CrossRef] [Google Scholar]
  • S.M. Stefanov, Separable Programming: Theory and Methods. Vol. 53. Springer Science and Business Media (2001). [CrossRef] [Google Scholar]
  • S.M. Stefanov, Characterization of the optimal solution of the convex separable continuous knapsack problem and related problems. J. Inf. Optim. Sci. 42 (2021) 1–16. [Google Scholar]
  • S.M. Stefanov, On the numerical solution of separable stochastic inventory control problems. J. Inf. Optim. Sci. 42 (2021) 533–561. [Google Scholar]
  • S.M. Stefanov and S.M. Stefanov, Introduction: approximating the separable problem, in Separable Optimization: Theory and Methods. Springer (2021) 61–72. [CrossRef] [Google Scholar]
  • Y.K. Sui and X.R. Peng, Explicit model of dual programming and solving method for a class of separable convex programming problems. Eng. Optim. 51 (2019) 1604–1625. [CrossRef] [MathSciNet] [Google Scholar]
  • H.A. Taha, Operations Research: An Introduction. Vol. 790. Pearson/Prentice Hall, Upper Saddle River, NJ, USA (2013). [Google Scholar]
  • R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24 (1981) 143–161. [Google Scholar]
  • K. Yamamura, An efficient algorithm for finding all solutions of nonlinear equations using parallelogram LP test. J. Comput. Appl. Math. 382 (2021) 113080. [CrossRef] [Google Scholar]
  • H. Zhang and S. Wang, Linearly constrained global optimization via piecewise-linear approximation. J. Comput. Appl. Math. 214 (2008) 111–120. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.