Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
|
|
---|---|---|
Page(s) | 3141 - 3156 | |
DOI | https://doi.org/10.1051/ro/2023168 | |
Published online | 30 November 2023 |
- M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey. Linear Algebra Appl. 458 (2014) 301–386. [CrossRef] [MathSciNet] [Google Scholar]
- A.E. Brouwer and W.H. Haemers, Spectra of Graphs. Springer, New York (2012). [CrossRef] [Google Scholar]
- D. Cvetkoić, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications. Academic Press, New York (1980). [Google Scholar]
- I. Gutman, Acyclic systems with extremal Hückel π-electron energy. Theor. Chim. Acta (Berlin) 45 (1977) 79–87. [CrossRef] [Google Scholar]
- I. Gutman, X. Li and J. Zhang, Graph energy, edited by M. Dehmer, F. Emmert-Streib, In Analysis of Complex Networks: From Biology to Linguistics. Wiley-VCH Verlag, Weinheim (2009) 145–174. [CrossRef] [Google Scholar]
- X. He and L. Lu, On the largest and least eigenvalues of eccentricity matrix of trees. Discrete Math. 345 (2022) 112662. [CrossRef] [Google Scholar]
- R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd edition. Cambridge University Press, Cambridge (2013). [Google Scholar]
- I. Mahato and M.R. Kannan, On the eccentricity matrices of trees: Inertia and spectral symmetry. Discrete Math. 345 (2022) 113067. [CrossRef] [Google Scholar]
- I. Mahato and M.R. Kannan, Eccentricity energy change of complete multipartite graphs due to edge deletion. Spec. Matrices 10 (2022) 193–202. [CrossRef] [MathSciNet] [Google Scholar]
- I. Mahato and M.R. Kannan, Minimizers for the energy of eccentricity matrices of trees. Preprint arXiv:2208.13462 (2022). [Google Scholar]
- I. Mahato, R. Gurusamy, M.R. Kannan and S. Arockiaraj, Spectra of eccentricity matrices of graphs. Discrete Appl. Math. 285 (2020) 252–260. [CrossRef] [MathSciNet] [Google Scholar]
- I. Mahato, R. Gurusamy, M.R. Kannan and S. Arockiaraj, On the spectral radius and the energy of eccentricity matrix of a graph. Linear Multilinear Algebra 71 (2023) 5–15. [CrossRef] [MathSciNet] [Google Scholar]
- X. Lei and J. Wang, Spectral determination of graphs with one positive anti-adjacency eigenvalue. Appl. Math. Comput. 422 (2022) 126995. [Google Scholar]
- J. Li, L. Qiu and J. Zhang, Proof of a conjecture on the ϵ-spectral radius of trees. AIMS Math. 8 (2023) 4363–4371. [CrossRef] [MathSciNet] [Google Scholar]
- J. Li, L. Qiu and J. Zhang, On the least eccentricity eigenvalue of graphs. Discrete Appl. Math. 336 (2023) 47–55. [CrossRef] [MathSciNet] [Google Scholar]
- A.K. Patel, L. Selvaganesh and S.K. Pandey, Energy and inertia of the eccentricity matrix of coalescence of graphs. Discrete Math. 344 (2021) 112591. [CrossRef] [Google Scholar]
- M. Randić, DMAX-matrix Of dominant distances in a graph. MATCH Commun. Math. Comput. Chem. 70 (2013) 221–238. [MathSciNet] [Google Scholar]
- J. Wang, M. Lu, F. Belardo and M. Randić, The anti-adjacency matrix of a graph: Eccentricity matrix. Discrete Appl. Math. 251 (2018) 299–309. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, L. Lu, M. Randić and G.Z. Li, Graph energy based on the eccentricity matrix. Discrete Math. 342 (2019) 2636–2646. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, M. Lu, L. Lu and F. Belardo, Spectral properties of the eccentricity matrix of graphs. Discrete Appl. Math. 279 (2020) 168–177. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, X. Lei, W. Wei and X. Luo, On the eccentricity matrix of graphs and its applications to the boiling point of hydrocarbons. Chemom. Intell. Lab. Syst. 207 (2020) 104173. [CrossRef] [Google Scholar]
- W. Wei and S. Li, On the eccentricity spectra of complete multipartite graphs. Appl. Math. Comput. 424 (2022) 127036. [Google Scholar]
- W. Wei, X. He and S. Li, Solutions for two conjectures on the eigenvalues of the eccentricity matrix, and beyond. Discrete Math. 343 (2020) 111925. [CrossRef] [MathSciNet] [Google Scholar]
- W. Wei, S. Li and L. Zhang, Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond. Discrete Math. 345 (2022) 112686. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.