Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 6, November-December 2023
|
|
---|---|---|
Page(s) | 3157 - 3168 | |
DOI | https://doi.org/10.1051/ro/2023173 | |
Published online | 04 December 2023 |
- J.S. Alameda, F. Kenter, K. Meagher and M. Young, An upper bound for the k-power domination number in r-uniform hypergraphs. Discrete Math. 345 (2022) 113038. [CrossRef] [Google Scholar]
- N.A.A. Aziz, N.J. Rad and H. Kamarulhaili, A note on the double domination number in maximal outerplanar and planar graphs. RAIRO:RO 56 (2022) 3367–3371. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Balakrishnan, P. Paulraja, W. So and M. Vinay, Some properties of the Knödel graph Wk,2k, k ≥ 4. Australas. J. Comb. 74 (2019) 17–32. [Google Scholar]
- R. Barrera and D. Ferrero, Power domination in cylinders, tori, and the generalized Petersen graphs. Networks (2009) 43–49. [Google Scholar]
- K.F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevskak and B. Wissman, Zero forcing and power domination for graph products. Australas. J. Comb. 70 (2018) 221–235. [Google Scholar]
- G.J. Chang and N. Roussel, On the k-power domination of hypergraphs. J. Comb. Optim. 30 (2015) 1095–1106. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Chang, P. Dorbec, M. Montassier and A. Raspud, Generalized power domination of graphs. Discret. Appl. Math. 160 (2012) 1691–1698. [CrossRef] [Google Scholar]
- C. Chang, C. Lu and Y. Zhou, The k-power domination problem in weighted trees. Theor. Comput. Sci. 809 (2020) 231–238. [CrossRef] [Google Scholar]
- P. Dorbec and S. Klazvar, Generalized power domination: Propagation radius and Sierpinski graphs. Acta Appl. Math. 134 (2014) 75–86. [CrossRef] [MathSciNet] [Google Scholar]
- P. Dorbec, M.A. Henning, C. Lowenstien, M. Montassier and A. Raspaud, Generalized power domination in regular graphs. SIAM J. Discrete Math. 27 (2013) 1559–1574. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dorfling and M. Henning, A note on power domination problem in graphs. Discret. Appl. Math. 154 (2006) 1023–1027. [CrossRef] [Google Scholar]
- G. Fertin and A. Raspaud, Families of graphs having broadcasting and gassiping properties. In: Proceedings of the 24th International Workshop on Graph-Theoretic Concepts in Computer Science Lect. Notes Comput. Sci. 1517 (1998) 63–77. [Google Scholar]
- G. Fertin and A. Raspaud, A survey on Knödel graphs. Discret. Appl. Math. 137 (2004) 173–195. [CrossRef] [Google Scholar]
- P. Fraigniaud and J.G. Peters, Minimum linear gossip graphs and maximal linear (Δ, k)-gossip graphs. Networks 38 (2001) 150–162. [CrossRef] [MathSciNet] [Google Scholar]
- H. Grigoryan and H.A. Harutyuunyan, Tight bound on the diameter of the Knödel graphs. Lect. Notes Comput. Sci. 736 (2013) 206–215. [CrossRef] [Google Scholar]
- T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M.A. Henning, Power domination in graphs applied to electrical power networks. SIAM J. Discrete Math. 15 (2002) 519–529. [Google Scholar]
- M.C. Heydemann, N. Marlin and S. Perennes, Complete rotations in Cayley graphs. Eur. J. Combin. 22 (2001) 179–196. [CrossRef] [Google Scholar]
- W. Knödel, New gossips and telephones. Discrete Math. 13 (1975) 95. [CrossRef] [MathSciNet] [Google Scholar]
- K.M. Koh and K.W. Soh, Power domination of the cartesian product of graphs. AKCE Int. J. Graphs Comb. 13 (2016) 22–30. [CrossRef] [MathSciNet] [Google Scholar]
- C.S. Liao and D.T. Lee, Power domination problems in graphs. Computing and Combinatorics, COCOON 2005. Lect. Notes Comput. Sci. 3595 (2005) 818–828. [CrossRef] [Google Scholar]
- D.A. Mojdeh, S.R. Musawi and E. Nazari, Domination in 4-regular Knödel graphs. Open Math. J. 16 (2018) 816–825. [CrossRef] [Google Scholar]
- D.A. Mojdeh, S.R. Musawi and E. Nazari, Domination in Critical Knödel graphs. Iran J. Sci. Technol. 43 (2019) 2423–2428. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Mojdeh, S.R. Musawi, E.N. Kiashi and N.J. Rad, Total domination in cubic Knödel graphs. Commun. Comb. Optim. 6 (2021) 221–230. [MathSciNet] [Google Scholar]
- D.A. Mojdeh, I. Masoumi and L. Volkmann, Restrained double Roman domination of a graph. RAIRO:RO 56 (2022) 2293–2304. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Prabhu, S. Deepa, R.M. Elavarasan and E. Hossain, Optimal PMU placement problem in octahedral networks. RAIRO:RO 56 (2022) 3449–3459. [CrossRef] [EDP Sciences] [Google Scholar]
- R.S. Rajan, J. Anitha and I. Rajasingh, 2-Power domination in certain interconnection networks. Procedia Comput. Sci. 57 (2015) 738–744. [CrossRef] [Google Scholar]
- H. Saadat, Power Systems Analysis, 2nd edition. PSA Publishing LLC, Portland (2002). [Google Scholar]
- M.U. Usman and M.O. Faruque, Applications of synchrophasor technologies in power systems. J. Mod. Power Syst. Clean Energy 7 (2019) 211–226. [CrossRef] [Google Scholar]
- S. Varghese, A. Vijayakumar and A.M. Hinz, Power domination in Knödel graphs and Hanoi graphs. Discuss. Math. Graph Theory 38 (2018) 63–74. [CrossRef] [MathSciNet] [Google Scholar]
- C. Wang, L. Chen and C. Lu, k-power domination in block graphs. J. Comb. Optim. 31 (2016) 865–873. [CrossRef] [MathSciNet] [Google Scholar]
- M. Zhao, L. Kang and G. Chang, Power domination in graphs. Discrete Math. 306 (2006) 1812–1816. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.