Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 373 - 395
DOI https://doi.org/10.1051/ro/2024001
Published online 08 February 2024
  • H.V.D. Parunak, Characterizing the manufacturing scheduling problem. J. Manuf. Syst. 10 (1991) 241–259. [CrossRef] [Google Scholar]
  • S.M. Johnson, Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logistics Q. 1 (1954) 61–68. [CrossRef] [Google Scholar]
  • T. Yoshida and K. Hitomi, Optimal two-stage production scheduling with setup times separated. AIIE Trans. 11 (1979) 261–263. [CrossRef] [Google Scholar]
  • A. Allahverdi and H.M. Soroush, The significance of reducing setup times/setup costs. Eur. J. Oper. Res. 187 (2008) 978–984. [CrossRef] [Google Scholar]
  • M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Peng, L. Wen, R. Li, L. Gao and X. Li, An effective hybrid algorithm for permutation flow shop scheduling problem with setup time. Proc. CIRP 72 (2018) 1288–1292. [CrossRef] [Google Scholar]
  • J. Belabid, S. Aqil and K. Allali, Solving permutation flow shop scheduling problem with sequence-independent setup time. J. Appl. Math. (2020). DOI: 10.1155/2020/7132469. [Google Scholar]
  • H. Sadki, J. Belabid, S. Aqil and K. Allali, On permutation flow shop scheduling problem with sequence-independent setup time and total flow time, in International Conference on Advanced Technologies for Humanity. Springer (2021) 507–518. [Google Scholar]
  • K. Chakravarthy and C. Rajendran, A heuristic for scheduling in a flowshop with the bicriteria of makespan and maximum tardiness minimization. Prod. Planning Control 10 (1999) 707–714. [CrossRef] [Google Scholar]
  • K. Allali, S. Aqil and J. Belabid, Distributed no-wait flow shop problem with sequence dependent setup time: optimization of makespan and maximum tardiness. Simul. Modell. Pract. Theory 116 (2021) 102455. [Google Scholar]
  • M.L. Pinedo, Scheduling. Vol. 29. Springer (2012). [CrossRef] [Google Scholar]
  • R. Ruiz, Q.-K. Pan and B. Naderi, Iterated greedy methods for the distributed permutation flowshop scheduling problem. Omega 83 (2019) 213–222. [CrossRef] [Google Scholar]
  • B. Naderi and R. Ruiz, The distributed permutation flowshop scheduling problem. Comput. Oper. Res. 37 (2010) 754–768. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Hou, Y. Fu, K. Gao, H. Zhang and A. Sadollah, Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows. Expert Syst. App. 187 (2022) 115827. [CrossRef] [Google Scholar]
  • A. Sbihi and M. Chemangui, A genetic algorithm for the steel continuous casting with inter-sequence dependent setups and dedicated machines. RAIRO: Oper. Res. 52 (2018) 1351–1376. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H.-X. Qin, Y.-Y. Han, B. Zhang, L.-L. Meng, Y.-P. Liu, Q.-K. Pan and D.-W. Gong, An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. Swarm Evol. Comput. 69 (2022) 100992. [CrossRef] [Google Scholar]
  • R. Ruiz and C. Maroto, A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. Eur. J. Oper. Res. 169 (2006) 781–800. [Google Scholar]
  • S. Aqil and K. Allali, Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem. Eng. App. Artif. Intell. 100 (2021) 104196. [CrossRef] [Google Scholar]
  • J. Cai, R. Zhou and D. Lei, Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks. Eng. App. Artif. Intell. 90 (2020) 103540. [CrossRef] [Google Scholar]
  • B. Xi and D. Lei, Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time. Complex Syst. Model. Simul. 2 (2022) 113–129. [CrossRef] [Google Scholar]
  • Z. Shao, W. Shao and D. Pi, LS-HH: a learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling. IEEE Trans. Emerg. Topics Comput. Intell. 7 (2022) 111–127. [Google Scholar]
  • X. Li and Y. Zhang, Adaptive hybrid algorithms for the sequence-dependent setup time permutation flow shop scheduling problem. IEEE Trans. Autom. Sci. Eng. 9 (2012) 578–595. [Google Scholar]
  • X. Li and S. Ma, Multiobjective discrete artificial bee colony algorithm for multiobjective permutation flow shop scheduling problem with sequence dependent setup times. IEEE Trans. Eng. Manage. 64 (2017) 149–165. [CrossRef] [Google Scholar]
  • R. Vanchipura and R. Sridharan, Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 67 (2013) 1337–1353. [CrossRef] [Google Scholar]
  • Q.-K. Pan, L. Wang and B. Qian, A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Comput. Oper. Res. 36 (2009) 2498–2511. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Qian, L. Wang, R. Hu, D.X. Huang and X. Wang, A de-based approach to no-wait flow-shop scheduling. Comput. Ind. Eng. 57 (2009) 787–80. [Google Scholar]
  • O. Engin and A. Güçlü, A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl. Soft Comput. 72 (2018) 166–176. [CrossRef] [Google Scholar]
  • G. Deng and X. Gu, A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Comput. Oper. Res. 39 (2012) 2152–2160. [Google Scholar]
  • Y. Zhou, H. Chen and G. Zhou, Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing 137 (2014) 285–292. [CrossRef] [Google Scholar]
  • Y. Goncharov and S. Sevastyanov, The flow shop problem with no-idle constraints: a review and approximation. Eur. J. Oper. Res. 196 (2009) 450–456. [CrossRef] [Google Scholar]
  • H.H. Miyata and M.S. Nagano, The blocking flow shop scheduling problem: a comprehensive and conceptual review. Expert Syst. App. 137 (2019) 130–156. [CrossRef] [Google Scholar]
  • S. Aqil and K. Allali, On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time. Ann. Oper. Res. 296 (2021) 615–637. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ribas, R. Companys and X. Tort-Martorell, A competitive variable neighbourhood search algorithm for the blocking flow shop problem. Eur. J. Ind. Eng. 7 (2013) 729–754. [CrossRef] [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, in Annals of Discrete Mathematics. Vol. 5. Elsevier (1979) 287–326. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Vignier, J.-C. Billaut and C. Proust, Les problèmes d’ordonnancement de type «flow-shop» hybride: état de l’art. RAIRO: Oper. Res.-Recherche Operationnelle 33 (1999) 117–183. [CrossRef] [EDP Sciences] [Google Scholar]
  • M.M. Mazdeh and M. Rostami, A branch-and-bound algorithm for two-machine flow-shop scheduling problems with batch delivery costs. Int. J. Syst. Sci. Oper. Logistics 1 (2014) 94–104. [Google Scholar]
  • J. Grabowski, E. Skubalska and C. Smutnicki, On flow shop scheduling with release and due dates to minimize maximum lateness. J. Oper. Res. Soc. 34 (1983) 615–620. [Google Scholar]
  • F. Jolai, H. Asefi, M. Rabiee and P. Ramezani, Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Sci. Iran. 20 (2013) 861–872. [Google Scholar]
  • A. Allahverdi, Minimizing mean flowtime in a two-machine flowshop with sequence-independent setup times. Comput. Oper. Res. 27 (2000) 111–127. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pranzo, Batch scheduling in a two-machine flow shop with limited buffer and sequence independent setup times and removal times. Eur. J. Oper. Res. 153 (2004) 581–592. [CrossRef] [Google Scholar]
  • L. Meng, C. Zhang, X. Shao, Y. Ren and C. Ren, Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. Int. J. Prod. Res. 57 (2019) 1119–1145. [CrossRef] [Google Scholar]
  • L. Meng, C. Zhang, X. Shao, B. Zhang, Y. Ren and W. Lin, More milp models for hybrid flow shop scheduling problem and its extended problems. Int. J. Prod. Res. 58 (2020) 3905–3930. [CrossRef] [Google Scholar]
  • B.N. Srikar and S. Ghosh, A milp model for the n-job, m-stage flowshop with sequence dependent set-up times. Int. J. Prod. Res. 24 (1986) 1459–1474. [CrossRef] [Google Scholar]
  • F.T. Tseng and E.F. Stafford Jr, New milp models for the permutation flowshop problem. J. Oper. Res. Soc. 59 (2008) 1373–1386. [CrossRef] [Google Scholar]
  • M. Takano and M. Nagano, Solving the permutation flow shop problem with blocking and setup time constraints. Int. J. Ind. Eng. Comput. 11 (2020) 469–480. [Google Scholar]
  • M. Nawaz, E.E. Enscore Jr. and I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11 (1983) 91–95. [CrossRef] [Google Scholar]
  • V. Fernandez-Viagas and J.M. Framinan, NEH-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness. Comput. Oper. Res. 60 (2015) 27–36. [CrossRef] [MathSciNet] [Google Scholar]
  • H.D. Pour, A new heuristic for the n-job, m-machine flow-shop problem. Prod. Planning Control 12 (2001) 648–653. [CrossRef] [Google Scholar]
  • S. Turner and D. Booth, Comparison of heuristics for flow shop sequencing. Omega 15 (1987) 75–78. [CrossRef] [Google Scholar]
  • R. Ruiz and C. Maroto, A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165 (2005) 479–494. [CrossRef] [Google Scholar]
  • T. Stützle, Applying iterated local search to the permutation flow shop problem. Technical report. Citeseer (1998). [Google Scholar]
  • A.A. Juan, H.R. Lourenço, M. Mateo, R. Luo and Q. Castella, Using iterated local search for solving the flow-shop problem: parallelization, parametrization, and randomization issues. Int. Trans. Oper. Res. 21 (2014) 103–126. [CrossRef] [MathSciNet] [Google Scholar]
  • R. M’hallah, An iterated local search variable neighborhood descent hybrid heuristic for the total earliness tardiness permutation flow shop. Int. J. Prod. Res. 52 (2014) 3802–3819. [CrossRef] [Google Scholar]
  • X. Dong, P. Chen, H. Huang and M. Nowak, A multi-restart iterated local search algorithm for the permutation flow shop problem minimizing total flow time. Comput. Oper. Res. 40 (2013) 627–632. [CrossRef] [Google Scholar]
  • X. Dong, H. Huang, P. Chen, An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion, Comput. Oper. Res. 36 (2009) 1664–1669. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Ruiz and T. Stützle, A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177 (2007) 2033–2049. [CrossRef] [Google Scholar]
  • B.J. Jeong, J.-H. Han and J.-Y. Lee, Metaheuristics for a flow shop scheduling problem with urgent jobs and limited waiting times. Algorithms 14 (2021) 323. [CrossRef] [Google Scholar]
  • R. Ruiz and T. Stützle, An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. Eur. J. Oper. Res. 187 (2008) 1143–1159. [CrossRef] [Google Scholar]
  • S. Wang and M. Liu, A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem. Comput. Oper. Res. 40 (2013) 1064–1075. [Google Scholar]
  • C. Oĝuz and M.F. Ercan, A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J. Scheduling 8 (2005) 323–351. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Branda, D. Castellano, G. Guizzi and V. Popolo, Metaheuristics for the flow shop scheduling problem with maintenance activities integrated. Comput. Ind. Eng. 151 (2021) 106989. [CrossRef] [Google Scholar]
  • A. Noorul Haq, T.R. Ramanan, K.S. Shashikant and R. Sridharan, A hybrid neural network–genetic algorithm approach for permutation flow shop scheduling. Int. J. Prod. Res. 48 (2010) 4217–4231. [CrossRef] [Google Scholar]
  • O. Etiler, B. Toklu, M. Atak and J. Wilson, A genetic algorithm for flow shop scheduling problems. J. Oper. Res. Soc. 55 (2004) 830–835. [CrossRef] [Google Scholar]
  • C.R. Reeves, A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22 (1995) 5–13. [Google Scholar]
  • T. Murata, H. Ishibuchi and Hideo Tanaka, Genetic algorithms for flowshop scheduling problems. Comput. Ind. Eng. 30 (1996) 1061–1071. [CrossRef] [Google Scholar]
  • L. Wang, L. Zhang and D.-Z. Zheng, An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Comput. Oper. Res. 33 (2006) 2960–2971. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Wang, H. Luo, F. Liu and X. Yue, Permutation flow shop scheduling with batch delivery to multiple customers in supply chains. IEEE Trans. Syst. Man Cybern. Syst. 48 (2017) 1826–1837. [Google Scholar]
  • M. Rebai, I. Kacem and K.H. Adjallah, Earliness–tardiness minimization on a single machine to schedule preventive maintenance tasks: metaheuristic and exact methods. J. Intell. Manuf. 23 (2012) 1207–1224. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.