Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 803 - 819
DOI https://doi.org/10.1051/ro/2023073
Published online 22 February 2024
  • P. Abad, Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Manage. Sci. 42 (1996) 1093–1104. [CrossRef] [Google Scholar]
  • P.L. Abad, Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs. Int. J. Prod. Econ. 114 (2008) 179–186. [Google Scholar]
  • A. Amjadian and A. Gharaei, An integrated reliable five-level closed-loop supply chain with multi-stage products under quality control and green policies: generalised outer approximation with exact penalty. Int. J. Syst. Sci. Oper. Logistics 9 (2022) 429–449. [Google Scholar]
  • R. Askari, M.V. Sebt and A. Amjadian, A multi-product EPQ model for defective production and inspection with single machine, and operational constraints: stochastic programming approach, in International Conference on Logistics and Supply Chain Management. Springer, Cham (2020) 161–193. [Google Scholar]
  • L.E. Cárdenas-Barrón, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 57 (2009) 1105–1113. [Google Scholar]
  • L.E. Cárdenas-Barrón, H.M. Wee and M.F. Blos, Solving the vendor–buyer integrated inventory system with arithmetic–geometric inequality. Math. Comput. Modell. 53 (2011) 991–997. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, A.A. Taleizadeh and G. Treviño-Garza, An improved solution to replenishment lot size problem with discontinuous issuing policy and rework, and the multi-delivery policy into economic production lot size problem with partial rework. Expert Syst. App. 39 (2012) 13540–13546. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, J.T. Teng, G. Treviño-Garza, H.M. Wee and K.R. Lou, An improved algorithm and solution on an integrated production-inventory model in a three-layer supply chain. Int. J. Prod. Econ. 136 (2012) 384–388. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, B. Sarkar and G. Treviño-Garza, Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework. Math. Comput. App. 18 (2013) 132–138. [Google Scholar]
  • L.E. Cárdenas-Barrón, B. Sarkar and G. Treviño-Garza, An improved solution to the replenishment policy for the EMQ model with rework and multiple shipments. Appl. Math. Modell. 37 (2013) 5549–5554. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, G. Treviño-Garza, G.A. Widyadana and H.M. Wee, A constrained multi-products EPQ inventory model with discrete delivery order and lot size. Appl. Math. Comput. 230 (2014) 359–370. [Google Scholar]
  • W. Chan, R. Ibrahim and P. Lochert, A new EPQ model: integrating lower pricing, rework and reject situations. Prod. Plann. Control 14 (2003) 588–595. [CrossRef] [Google Scholar]
  • H.-C. Chang, C.-H. Ho, L.-Y. Ouyang and C.-H. Su, The optimal pricing and ordering policy for an integrated inventory model when trade credit linked to order quantity. Appl. Math. Modell. 33 (2009) 2978–2991. [CrossRef] [Google Scholar]
  • Z. Chen and Y. Yang, Optimality of (s, S, p) policy in a general inventory-pricing model with uniform demands. Oper. Res. Lett. 38 (2010) 256–260. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.P. Chiu, Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Eng. Optim. 35 (2003) 427–437. [CrossRef] [Google Scholar]
  • K.-J. Chung, Bounds for production lot sizing with machine breakdowns. Comput. Ind. Eng. 32 (1997) 139–144. [CrossRef] [Google Scholar]
  • C.-Y. Dye, T.-P. Hsieh and L.-Y. Ouyang, Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. Eur. J. Oper. Res. 181 (2007) 668–678. [CrossRef] [Google Scholar]
  • A. Eroglu and G. Ozdemir, An economic order quantity model with defective items and shortages, Int. J. Prod. Econ. 106 (2007) 544–549. [Google Scholar]
  • A. Federgruen and A. Heching, Combined pricing and inventory control under uncertainty. Oper. Res. 47 (1999) 454–475. [CrossRef] [MathSciNet] [Google Scholar]
  • J. García-Laguna, L.A. San-José, L.E. Cárdenas-Barrón and J. Sicilia, The integrality of the lot size in the basic EOQ and EPQ models: applications to other production-inventory models. Appl. Math. Comput. 216 (2010) 1660–1672. [MathSciNet] [Google Scholar]
  • A. Gharaei, A. Amjadian and A. Shavandi, An integrated reliable four-level supply chain with multi-stage products under shortage and stochastic constraints. Int. J. Syst. Sci. Oper. Logistics (2021) 1–22. [Google Scholar]
  • A. Gharaei, A. Amjadian, A. Amjadian, A. Shavandi, A. Hashemi, M. Taher and N. Mohamadi, An integrated lot-sizing policy for the inventory management of constrained multi-level supply chains: null-space method. Int. J. Syst. Sci. Oper. Logistics (2022) 1–14. [Google Scholar]
  • C.H. Glock, E.H. Grosse and J.M. Ries, The lot sizing problem: a tertiary study. Int. J. Prod. Econ. 155 (2014) 39–51. [CrossRef] [Google Scholar]
  • K. Govindan and T.C.E. Cheng, Advances in stochastic programming and robust optimization for supply chain planning. Comput. Oper. Res. 100 (2018) 262–269. [CrossRef] [Google Scholar]
  • S.K. Goyal and L.E. Cárdenas-Barrón, Note on: economic production quantity model for items with imperfect quality: a practical approach. Int. J. Prod. Econ. 77 (2002) 85–87. [CrossRef] [Google Scholar]
  • F. Harris, How many parts to make at once. Factory Mag. Manage. 10 (1913) 135–136, and 152. [Google Scholar]
  • P.A. Hayek and M.K. Salameh, Production lot sizing with the reworking of imperfect quality items produced. Prod. Planning Control 12 (2001) 584–590. [CrossRef] [Google Scholar]
  • K.S. Hong and C. Lee, Optimal time-based consolidation policy with price sensitive demand. Int. J. Prod. Econ. 143 (2013) 275–284. [CrossRef] [Google Scholar]
  • K.S. Hong, S.S. Yeo, H.J. Kim, E.P. Chew and C. Lee, Integrated inventory and transportation decision for ubiquitous supply chain management. J. Intell. Manuf. 23 (2012) 977–988. [CrossRef] [Google Scholar]
  • V.B. Kreng and S.J. Tan, Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy. Expert Syst. App. 38 (2011) 9888–9899. [CrossRef] [Google Scholar]
  • A.H.L. Lau and H.S. Lau, Effects of a demand-curve’s shape on the optimal solutions of a multi-echelon inventory/pricing model. Eur. J. Oper. Res. 147 (2003) 530–548. [CrossRef] [Google Scholar]
  • L.-Y. Ouyang, C.-H. Ho and C.-H. Su, An optimization approach for joint pricing and ordering problem in an integrated inventory system with order-size dependent trade credit. Comput. Ind. Eng. 57 (2009) 920–930. [CrossRef] [Google Scholar]
  • D.W. Pentico and M.J. Drake, A survey of deterministic models for the EOQ and EPQ with partial backordering. Eur. J. Oper. Res. 214 (2011) 179–198. [CrossRef] [Google Scholar]
  • D.W. Pentico, M.J. Drake and C. Toews, The deterministic EPQ with partial backordering: a new approach. Omega 37 (2009) 624–636. [CrossRef] [Google Scholar]
  • D.W. Pentico, M.J. Drake and C. Toews, The EPQ with partial backordering and phase-dependent backordering rate. Omega 39 (2011) 574–577. [CrossRef] [Google Scholar]
  • D.W. Pentico, C. Toews and M.J. Drake, Two heuristics for the basic EOQ and EPQ with partial ackordering. Int. J. Inf. Syst. Supply Chain Manage. 7 (2014) 31–49. [CrossRef] [Google Scholar]
  • E.L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction. Oper. Res. 34 (1986) 137–144. [Google Scholar]
  • M. Salameh and M. Jaber, Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64 (2000) 59–64. [CrossRef] [Google Scholar]
  • B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Modell. 37 (2013) 3138–3151. [CrossRef] [Google Scholar]
  • B. Sarkar and S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand. Expert Syst. App. 202 (2022) 117154. [CrossRef] [Google Scholar]
  • B. Sarkar, L.E. Cárdenas-Barrón, M. Sarkar and M.L. Singgih, An economic production quantity model with random defective rate, rework process and backorders for a single stage production system. J. Manuf. Syst. 33 (2014) 423–435. [Google Scholar]
  • B. Sarkar, B.K. Dey, M. Sarkar and S.J. Kim, A smart production system with an autonomation technology and dual channel retailing. Comput. Ind. Eng. 173 (2022) 108607. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Ullah and M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing. J. Cleaner Prod. 332 (2022) 129813. [CrossRef] [Google Scholar]
  • E.W. Taft, The most economical production lot. Iron Age 101 (1918) 1410–1412. [Google Scholar]
  • A.A. Taleizadeh, A. Najafi and N.S. Akhavan, Economic production quantity model with scrapped items and limited production capacity. Sci. Iran. Trans. E: Ind. Eng. 17 (2010) 58–69. [Google Scholar]
  • A.A. Taleizadeh, H.-M. Wee and S.J. Sadjadi, Multi-product production quantity model with repair failure and partial back-ordering. Comput. Ind. Eng. 59 (2010) 45–54. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, L.E. Cárdenas-Barrón and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150 (2014) 9–27. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, M. Noori-daryan and R. Tavakkoli-Moghaddam, Pricing and ordering decisions in a supply chain with imperfect quality items and inspection under buyback of defective items. Int. J. Prod. Res. 53 (2015) 4553–4582. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, A.Z. Safaei, A. Bhattacharya and A. Amjadian, Online peer-to-peer lending platform and supply chain finance decisions and strategies. Ann. Oper. Res. 315 (2022) 397–427. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Tayyab, M.S. Habib, M.S.S. Jajja and B. Sarkar, Economic assessment of a serial production system with random imperfection and shortages: a step towards sustainability. Comput. Ind. Eng. 171 (2022) 108398. [CrossRef] [Google Scholar]
  • J.-T. Teng, M.-S. Chern, H.-L. Yang and Y.J. Wang, Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand. Oper. Res. Lett. 24 (1999) 65–72. [CrossRef] [MathSciNet] [Google Scholar]
  • J.-T. Teng, L.E. Cárdenas-Barrón and K.-R. Lou, The economic lot size of the integrated vendor–buyer inventory system derived without derivatives: a simple derivation. Appl. Math. Comput. 217 (2011) 5972–5977. [MathSciNet] [Google Scholar]
  • J.T. Teng, L.E. Cárdenas-Barrón, K.R. Lou and H.M. Wee, Optimal economic order quantity for buyer–distributor–vendor supply chain with backlogging derived without derivatives. Int. J. Syst. Sci. 44 (2013) 986–994. [CrossRef] [Google Scholar]
  • G. Treviño-Garza, K.K. Castillo-Villar and L.E. Cárdenas-Barrón, Joint determination of the lot size and number of shipments for a family of integrated vendor–buyer systems considering defective products. Int. J. Syst. Sci. 46 (2015) 1705–1716. [Google Scholar]
  • R. Uthayakumar and M. Palanivel, An inventory model for defective items with trade credit and inflation. Prod. Manuf. Res. 2 (2014) 355–379. [Google Scholar]
  • H.M. Wee, W.-T. Wang and L.E. Cárdenas-Barrón, An alternative analysis and solution procedure for the EPQ model with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 64 (2013) 748–755. [CrossRef] [Google Scholar]
  • T.M. Whitin, Inventory control and price theory. Manage. Sci. 2 (1955) 61–68. [Google Scholar]
  • P.-S. You and M.-T. Wu, Optimal ordering and pricing policy for an inventory system with order cancellations. OR Spectrum 29 (2007) 661–679. [CrossRef] [Google Scholar]
  • X. Zhang and Y. Gerchak, Joint lot sizing and inspection policy in an EOQ model with random yield. IIE Trans. 22 (1990) 41–47. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.