Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 629 - 664
Published online 22 February 2024
  • E.-H. Aghezzaf and N.M. Najid, Integrated production planning and preventive maintenance in deteriorating production systems. Inf. Sci. 178 (2008) 3382–3392. [CrossRef] [Google Scholar]
  • M. Alimian, M. Saidi-Mehrabad and A. Jabbarzadeh, A robust integrated production and preventive maintenance planning model for multi-state systems with uncertain demand and common cause failures. J. Manuf. Syst. 50 (2019) 263–277. [CrossRef] [Google Scholar]
  • E. Alvarez, Multi-plant production scheduling in smes. Robot. Comput. Integr. Manuf. 23 (2007) 608–613. [CrossRef] [Google Scholar]
  • A. Beck and A. Ben-Tal, Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37 (2009) 1–6. [Google Scholar]
  • A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning. Int. J. Prod. Econ. 104 (2006) 260–270. [CrossRef] [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Robust optimization–methodology and applications. Math. Program. 92 (2002) 453–480. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Selected topics in robust convex optimization. Math. Program. 112 (2008) 125–158. [Google Scholar]
  • A. Ben-Tal, D. Den Hertog and J.-P. Vial, Deriving robust counterparts of nonlinear uncertain inequalities. Math. Program. 149 (2015) 265–299. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
  • D. Bertsimas and D.B. Brown, Constructing uncertainty sets for robust linear optimization. Oper. Res. 57 (2009) 1483–1495. [Google Scholar]
  • D. Bertsimas, D. Pachamanova and M. Sim, Robust linear optimization under general norms. Oper. Res. Lett. 32 (2004) 510–516. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Bertsimas, D.B. Brown and C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53 (2011) 464–501. [Google Scholar]
  • J.R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  • C.R. Cassady and E. Kutanoglu, Minimizing job tardiness using integrated preventive maintenance planning and production scheduling. IIE Trans. 35 (2003) 503–513. [CrossRef] [Google Scholar]
  • C.-C. Chern and J.-S. Hsieh, A heuristic algorithm for master planning that satisfies multiple objectives. Comput. Oper. Res. 34 (2007) 3491–3513. [CrossRef] [Google Scholar]
  • W. Cui, Z. Lu, C. Li and X. Han, A proactive approach to solve integrated production scheduling and maintenance planning problem in flow shops. Comput. Ind. Eng. 115 (2018) 342–353. [CrossRef] [Google Scholar]
  • P.H. Emmons, Concrete Repair and Maintenance Illustrated: Problem Analysis, Repair Strategy, Techniques, Vol. 28. John Wiley & Sons (1992). [Google Scholar]
  • J. Ghahremani Nahr, S. Hamid Reza Pasandideh and S. Taghi Akhavan Niaki, A robust optimization approach for multi-objective, multi-product, multi-period, closed-loop green supply chain network designs under uncertainty and discount. J. Ind. Prod. Eng. 37 (2020) 1–22. [Google Scholar]
  • H. Gholizadeh, M. Chaleshigar and H. Fazlollahtabar, Robust optimization of uncertainty-based preventive maintenance model for scheduling series–parallel production systems (real case: disposable appliances production). ISA Trans. (2021). [Google Scholar]
  • H. Golpîra and E.B. Tirkolaee, Stable maintenance tasks scheduling: A bi-objective robust optimization model. Comput. Ind. Eng. 137 (2019) 106007. [CrossRef] [Google Scholar]
  • B.L. Gorissen and D. Den Hertog, Robust counterparts of inequalities containing sums of maxima of linear functions. Eur. J. Oper. Res. 227 (2013) 30–43. [CrossRef] [Google Scholar]
  • S. Graham and N. Thrift, Out of order: Understanding repair and maintenance. Theory Cult. Soc. 24 (2007) 1–25. [Google Scholar]
  • N.J. Higham, Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103 (1988) 103–118. [CrossRef] [Google Scholar]
  • F.R. Jacobs, W.L. Berry, D.C. Whybark, T.E. Vollmann and T. Vollmann, Manufacturing Planning and Control for Supply Chain Management. McGraw-Hill, New York (2011). [Google Scholar]
  • S.T. Kafiabad, M.K. Zanjani and M. Nourelfath, Robust collaborative maintenance logistics network design and planning. Int. J. Prod. Econ. 244 (2022) 108370. [CrossRef] [Google Scholar]
  • J.-P. Kenné, P. Dejax and A. Gharbi, Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain. Int. J. Prod. Econ. 135 81–93. [Google Scholar]
  • Z. Li and M.G. Ierapetritou, Robust optimization for process scheduling under uncertainty. Ind. Eng. Chem. Res. 47 (2008) 4148–4157. [CrossRef] [Google Scholar]
  • X. Lin, S.L. Janak and C.A. Floudas, A new robust optimization approach for scheduling under uncertainty: I. bounded uncertainty. Comput. Chem. Eng. 28 (2004) 1069–1085. [CrossRef] [Google Scholar]
  • M.A. Moghadam, S.B. Ebrahimi and D. Rahmani, A constrained multi-period robust portfolio model with behavioral factors and an interval semi-absolute deviation. J. Comput. Appl. Math. (2020) 112742. [CrossRef] [MathSciNet] [Google Scholar]
  • D.K. Mohanta, P.K. Sadhu and R. Chakrabarti, Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using ga/sa-based hybrid techniques: A comparison of results. Reliab. Eng. Syst. Saf. 92 (2007) 187–199. [CrossRef] [Google Scholar]
  • J. Mula, R. Poler, J.P. García-Sabater and F.C. Lario, Models for production planning under uncertainty: A review. Int. J. Prod. Econ. 103 (2006) 271–285. [CrossRef] [Google Scholar]
  • M. Nourelfath, Service level robustness in stochastic production planning under random machine breakdowns. Eur. J. Oper. Res. 212 (2011) 81–88. [CrossRef] [Google Scholar]
  • S. Ouaret, J.-P. Kenné and A. Gharbi, Production and replacement policies for a deteriorating manufacturing system under random demand and quality. Eur. J. Oper. Res. 264 (2018) 623–636. [CrossRef] [Google Scholar]
  • A. Prékopa, Stochastic Programming, Vol. 324. Springer Science & Business Media (2013). [Google Scholar]
  • A.P. Ruszczynski and A. Shapiro, Stochastic Programming, Vol. 10. Elsevier Amsterdam (2003). [Google Scholar]
  • N.P. Sahoo and M.P. Biswal, Computation of a multi-objective production planning model with probabilistic constraints. Int. J. Comput. Math. 86 (2009) 185–198. [CrossRef] [Google Scholar]
  • H. Shahmoradi-Moghadam, N. Safaei and S.J. Sadjadi, Robust maintenance scheduling of aircraft fleet: A hybrid simulation-optimization approach. IEEE Access 9 (2021) 17854–17865. [CrossRef] [Google Scholar]
  • M. Sharafali, H.C. Co and M. Goh, Production scheduling in a flexible manufacturing system under random demand. Eur. J. Oper. Res. 158 (2004) 89–102. [CrossRef] [Google Scholar]
  • E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling, Vol. 3. Wiley New York (1998). [Google Scholar]
  • S. Singh and M.P. Biswal, A robust optimization model under uncertain environment: An application in production planning. Comput. Ind. Eng. 155 (2021) 107169. [CrossRef] [Google Scholar]
  • A.L. Soyster, Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (1973) 1154–1157. [CrossRef] [Google Scholar]
  • S. Wang and J. Yu, An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Comput. Ind. Eng. 59 (2010) 436–447. [CrossRef] [Google Scholar]
  • Z. Wang, C.K. Pang and T.S. Ng, Robust scheduling optimization for flexible manufacturing systems with replenishment under uncertain machine failure disruptions. Control Eng. Pract. 92 (2019) 104094. [CrossRef] [Google Scholar]
  • W.D. Wei and C.L. Liu, On a periodic maintenance problem. Oper. Res. Lett. 2 (1983) 90–93. [CrossRef] [Google Scholar]
  • H. Zied, D. Sofiene and R. Nidhal, An optimal production/maintenance planning under stochastic random demand, service level and failure rate. In 2009 IEEE International Conference on Automation Science and Engineering, IEEE (2009) 292–297. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.