Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 613 - 627
DOI https://doi.org/10.1051/ro/2023196
Published online 22 February 2024
  • A.B Abubakar, P. Kumam, M. Malik and A.I Hassan, A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems. Math. Comput. Simul. 201 (2022) 640–657. [CrossRef] [Google Scholar]
  • N. Andrei, A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes–Stiefel and Dai–Yuan. Stud. Inf. Control 17 (2008) 55–70. [Google Scholar]
  • N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
  • N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization. Encycl. Optim. (2009) 2560–2571. [Google Scholar]
  • N. Andrei, Another nonlinear conjugate gradient algorithm for unconstrained optimization. Optim. Methods Softw. 24 (2009) 89–104. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer (2020). [CrossRef] [Google Scholar]
  • I. Bongartz, A.R. Conn, N. Gould and P.L. Toint, CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. (TOMS) 21 (1995) 123–160. [CrossRef] [Google Scholar]
  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
  • S.S. Djordjević, New hybrid conjugate gradient method as a convex combination of FR and PRP methods. Filomat 30 (2016) 3083–3100. [CrossRef] [MathSciNet] [Google Scholar]
  • S.S. Djordjević, New hybrid conjugate gradient method as a convex combination of HS and FR conjugate gradient methods. J. Appl. Math. Comput. 2 (2018) 366–378. [Google Scholar]
  • S.S. Djordjević, New hybrid conjugate gradient method as a convex combination of LS and FR conjugate gradient methods. Acta Math. Sci. 39 (2019) 214–228. [CrossRef] [MathSciNet] [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • R. Fletcher, Practical Methods of Optimization, Unconstrained Optimization. Vol. 1. John Wiley and Son, New York (1980). [Google Scholar]
  • R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. [Google Scholar]
  • W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006) 35–58. [MathSciNet] [Google Scholar]
  • S.B. Hanachi, S. Badreddine and M. Belloufi, New iterative conjugate gradient method for nonlinear unconstrained optimization. RAIRO: Oper. Res. 56 (2022) 2315–2327. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409–436. [CrossRef] [Google Scholar]
  • Y.F. Hu and C. Storey, Global convergence result for conjugate gradient method. J. Optim. Theory Appl. 71 (1991) 399–405. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Li and Z.B. Sun, A new hybrid conjugate gradient method and its global convergence for unconstrained optimization. Int. J. Pure Appl. Math. 63 (2010) 84–93. [Google Scholar]
  • A.J. Liu, and S. Li, New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput. 245 (2014) 36–43. [MathSciNet] [Google Scholar]
  • D. Liu and C. Story, Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory App. 69 (1991) 129–137. [CrossRef] [Google Scholar]
  • E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées. Revue Française D’informatique et De Recherche Opérationnelle, Série Rouge. 3 (1969) 35–43. [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • I.M. Sulaiman, N.A. Bakar, M. Mamat, B.A. Hassan, M. Malik and A.M. Ahmed, A new hybrid conjugate gradient algorithm for optimization models and its application to regression analysis. Indones. J. Electr. Eng. Comput. Sci. 23 (2021) 1100–1109. [Google Scholar]
  • D. Touati-Ahmed and C. Storey, Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64 (1990) 379–397. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Wolfe, Convergence conditions for ascent methods. SIAM Rev. 11 (1969) 226–235. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Wolfe, Convergence conditions for ascent methods. II: some corrections. SIAM Rev. 13 (1971) 185–188. [CrossRef] [MathSciNet] [Google Scholar]
  • World heath organization, Report on coronavirus (COVID-19) (2020). [Google Scholar]
  • World Health Organization (WHO), Naming the coronavirus disease (COVID-19) and the virus that causes it. Braz. J. Implantol. Health Sci. 2 (2020). [Google Scholar]
  • T.J. Wu, K. Leung and M.G. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet 395 (2020) 689–697. [CrossRef] [Google Scholar]
  • G. Zoutendijk, Nonlinear programming, computational methods. Integer Nonlinear Program. (1970) 37–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.