Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 713 - 739
DOI https://doi.org/10.1051/ro/2023170
Published online 22 February 2024
  • M. Amiri, M. Ekhtiari and M. Yazdani, Nadir compromise programming: A model for optimization of multi-objective portfolio problem. Expert Syst. Appl. 38 (2011) 7222–7226. [CrossRef] [Google Scholar]
  • B. Aouni, M. Doumpos, B. Pérez-Gladish and R.E. Steuer, On the increasing importance of multiple criteria decision aid methods for portfolio selection. J. Oper. Res. Soc. 69 (10) (2018) 1525–1542. [CrossRef] [Google Scholar]
  • M. Bazaraa, J. Jarvis and H. Sherali, Linear Programming and Network Flows, 4th edition. John Wiley & Sons, New York (2010). [Google Scholar]
  • X. Cai, K.L. Teo, X. Yang and X.Y. Zhou, Portfolio optimization under l risk measure. In: 1996 35th IEEE Conference on Decision and Control (CDC). IEEE (1996) 3682–3687. [Google Scholar]
  • X. Cai, K.L. Teo, X. Yang and X.Y. Zhou, Portfolio optimization under a minimax rule. Manag. Sci. 46 (2000) 957–972. [CrossRef] [Google Scholar]
  • X. Cai, K.L. Teo, X. Yang and X.Y. Zhou, Minimax portfolio optimization: empirical numerical study. J. Oper. Res. Soc. 55 (2004) 65–72. [CrossRef] [Google Scholar]
  • A. Care, S. Garatti and M.C. Campi, Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25 (2015) 2061–2080. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Demircan Keskin, A two-stage fuzzy approach for industry 4.0 project portfolio selection within criteria and project interdependencies context. J. Multi-Criteria Decis. Anal. 27 (2020) 65–83. [CrossRef] [Google Scholar]
  • E.K. Doolittle, G.M. Dranichak, K. Muir and M.M. Wiecek, A note on robustness of the min-max solution to multi-objective linear programs. Int. J. Multicriteria Decis. Mak. 6 (2016) 343–365. [CrossRef] [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization, 2nd edition. Springer, Berlin (2005). [Google Scholar]
  • C. Fulga, Integrated bi-criteria decision support system for portfolio selection. J. Decis. Syst. 24 (2015) 159–177. [CrossRef] [Google Scholar]
  • D. Goldfarb and G. Iyengar, Robust portfolio selection problems. Math. Oper. Res. 28 (2003) 1–38. [Google Scholar]
  • P. Grau-Carles, Risk-adjusted performance measurement, edited by H. Kent Baker and G. Filbeck, In: Investment Risk Management. Oxford University Press, Oxford (2015) 365–386. [CrossRef] [Google Scholar]
  • N. Gulpinar and B. Rustem, Worst-case robust decisions for multi-period mean-variance portfolio optimization. Eur. J. Oper. Res. 183 (2007) 981–1000. [CrossRef] [Google Scholar]
  • F. Haghighirad and S.M. Rowzan, Designing a hybrid system dynamic model for analyzing the impact of strategic alignment on project portfolio selection. Simul. Model. Pract. Theory 89 (2018) 175–194. [CrossRef] [Google Scholar]
  • H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37 (1991) 501–623. [Google Scholar]
  • P. Kumar, G. Panda and U.C. Gupta, Stochastic programming technique for portfolio optimization with minimax risk and bounded parameters. Sādhanā 43 (2018) 149. [Google Scholar]
  • O. Ledoit and M. Wolf, Robust performance hypothesis testing with the Sharpe ratio. J. Empir. Finance 15 (2008) 850–859. [CrossRef] [Google Scholar]
  • B. Li, Y. Zhu, Y. Sun, G. Aw and K.L. Teo, Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Appl. Math. Model. 56 (2018) 539–550. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Li, Y. Sun, G. Aw and K.L. Teo, Uncertain portfolio optimization problem under a minimax risk measure. Appl. Math. Model. 76 (2019) 274–281. [CrossRef] [MathSciNet] [Google Scholar]
  • J.G.G. Lin, On min-norm and min-max methods of multi-objective optimization. Math. Program. 103 (2005) 1–33. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Liu, Q. Lei and H. Jia, Maximum entropy bi-Objective model and its evolutionary algorithm for portfolio optimization. To appear in: Asia-Pac. J. Oper. Res. 39 (2022) 2250014. [CrossRef] [Google Scholar]
  • J. Ma, J.D. Harstvedt, R. Jaradat and B. Smith, Sustainability driven multi-criteria project portfolio selection under uncertain decision-making environment. Comput. Ind. Eng. 140 (2020) 106236. [CrossRef] [Google Scholar]
  • R. Mansini, W. Orgryczak and M.G. Speranza, Twenty years of linear programming based portfolio optimization. Eur. J. Oper. Res. 234 (2014) 518–535. [CrossRef] [Google Scholar]
  • H. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91. [Google Scholar]
  • M. Masmoudi and F.B. Abdelaziz, Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models. Ann. Oper. Res. 267 (2018) 335–352. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Morton, J.M. Keisler and A. Salo, Multicriteria portfolio decision analysis for project selection, edited by S. Greco, M. Ehrgott and J. Figueira, In: Multiple Criteria Decision Analysis. Springer, Berlin (2016) 1269–1298. [CrossRef] [Google Scholar]
  • P. Pasricha, D. Selvamuthu, G. D’Amico and R. Manca, Portfolio optimization of credit risky bonds: a semi-Markov process approach. Financ. Innov. 6 (2020) 25. [CrossRef] [Google Scholar]
  • R. Qi and G.G. Yen, Hybrid bi-objective portfolio optimization with pre-selection strategy. Inf. Sci. 417 (2017) 401–419. [CrossRef] [Google Scholar]
  • B. Rustem, R.G. Becker and W. Marty, Robust min-max portfolio strategies for rival forecast and risk scenarios. J. Econ. Dyn. Control 24 (2000) 1591–1621. [CrossRef] [Google Scholar]
  • H. Salmei and M.A. Yaghoobi, Improving the min-max method for multiobjective programming. Oper. Res. Lett. 48 (2020) 480–486. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Sharma and A. Mehra, Portfolio selection with a minimax measure in safety constraint. Optimization 62 (2013) 1473–1500. [CrossRef] [MathSciNet] [Google Scholar]
  • W.F. Sharpe, A linear programming approximation for the general portfolio analysis problem. J. Financ. Quant. Anal. 6 (1971) 1263–1275. [CrossRef] [Google Scholar]
  • A. Singh and S. Dharmaraja, A portfolio optimisation model for credit risky bonds with Markov model credit rating dynamics. Int. J. Finan. Mark. Deriv. 6 (2017) 102–119. [Google Scholar]
  • S. Song, T. Wei, F. Yang and Q. Xia, Stochastic multi-attribute acceptability analysis-based heuristic algorithms for multi-attribute project portfolio selection and scheduling problem. J. Oper. Res. Soc. 72 (2021) 1373–1389. [CrossRef] [Google Scholar]
  • C. Sun and M. Zhang, Optimal portfolio selection under minimax criterion with short-selling. In: 2017 29th Chinese Control And Decision Conference (CCDC). IEEE (2017) 4538–4542. [Google Scholar]
  • M. Tamiz, R.A. Azmi and D.F. Jones, On selecting portfolio of international mutual funds using goal programming with extended factors. Eur. J. Oper. Res. 226 (2013) 560–576. [CrossRef] [Google Scholar]
  • K.L. Teo and X.Q. Yang, Portfolio selection problem with minimax type risk function. Ann. Oper. Res. 101 (2001) 333–349. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Young, A minimax portfolio selection rule with linear programming solution. Manag. Sci. 44 (1998) 673–683. [CrossRef] [Google Scholar]
  • M. Yu and S. Wang, Dynamic optimal portfolio with maximum absolute deviation model. J. Global Optim. 53 (2012) 363–380. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Zhai and M. Bai, Mean-risk model for uncertain portfolio selection with background risk. J. Comput. Appl. Math. 330 (2018) 59–69. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.