Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 741 - 758
Published online 22 February 2024
  • M. Abbas and D. Chaabane, Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174 (2006) 1140–1161. [Google Scholar]
  • F. Abdelaziz, B. Aouni and R. El Fayedh, Multi-objective stochastic programming for portfolio selection. Eur. J. Oper. Res. 177 (2007) 1811–1823. [CrossRef] [Google Scholar]
  • H. Benson, Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26 (1978) 569–580. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Benson, Optimization over the efficient set. J. Math. Anal. Appl. 98 (1984) 562–580. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Boland, H. Charkhgard and M. Savelsbergh, A new method for optimizing a linear function over the efficient set of a multiobjective integer program. Eur. J. Oper. Res. 260 (2017) 904–919. [CrossRef] [Google Scholar]
  • K. Bretthauer and B. Shetty, Quadratic resource allocation with generalized upper bounds. Oper. Res. Lett. 20 (1997) 51–57. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Bretthauer and B. Shetty, The nonlinear knapsack problem–algorithms and applications. Eur. J. Oper. Res. 138 (2002) 459–472. [CrossRef] [Google Scholar]
  • Y. Chaiblaine and M. Moula¨ı, An exact method for optimizing a quadratic function over the efficient set of multiobjective integer linear fractional program. Optim. Lett. (2021) 1–15. [Google Scholar]
  • M. Djerdjour, K. Mathur and H. Salkin, A surrogate relaxation based algorithm for a general quadratic multi-dimensional knapsack problem. Oper. Res. Lett. 7 (1988) 253–258. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Drici, F. Ouail and M. Moula¨ı, Optimizing a linear fractional function over the integer efficient set. Ann. Oper. Res. 267 (2018) 135–151. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Ecker and J. Song, Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83 (1994) 541–563. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Gallo, P. Hammer and B. Simeone, Quadratic knapsack problems. Comb. Optim. (1980) 132–149. [Google Scholar]
  • Z. Hua, B. Zhang and L. Liang, An approximate dynamic programming approach to convex quadratic knapsack problems. Comput. Oper. Res. 33 (2006) 660–673. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Jorge, An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195 (2009) 98–103. [CrossRef] [Google Scholar]
  • B. Lokman, Optimizing a linear function over the nondominated set of multiobjective integer programs. Int. Trans. Oper. Res. (2019). [Google Scholar]
  • B. Martos, Nonlinear Programming: Theory and Methods (1975). [Google Scholar]
  • M. Moula¨ı and W. Drici, An indefinite quadratic optimization over an integer efficient set. Optimization 67 (2018) 1143–1156. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Nepal, L. Monplaisir and O. Famuyiwa, A multi-objective supply chain configuration model for new products. Int. J. Prod. Res. 49 (2011) 7107–7134. [Google Scholar]
  • F. Oua¨ıl and M. Chergui, A branch-and-cut technique to solve multiobjective integer quadratic programming problems. Ann. Oper. Res. 267 (2018) 431–446. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ozlen, M. Azizoğlu and B. Burton, Optimising a nonlinear utility function in multi-objective integer programming. J. Glob. Optim. 56 (2013) 93–102. [CrossRef] [Google Scholar]
  • D. Quadri, E. Soutif and P. Tolla, Exact solution method to solve large scale integer quadratic multidimensional knapsack problems. J. Comb. Optim. 17 (2009) 157–167. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Shetty and R. Muthukrishnan, A parallel projection for the multicommodity network model. J. Oper. Res. Soc. 41 (1990) 837–842. [CrossRef] [Google Scholar]
  • I. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications. Springer Science & Business Media (2012). [Google Scholar]
  • R. Wang and T. Liang, Application of fuzzy multi-objective linear programming to aggregate production planning. Comput. Ind. Eng. 46 (2004) 17–41. [CrossRef] [Google Scholar]
  • B. Zahiri, R. Tavakkoli-Moghaddam, M. Mohammadi and P. Jula, Multi-objective design of an organ transplant network under uncertainty. Transp. Res. Part E: Logist. Transp. Rev. 72 (2014) 101–124. [CrossRef] [Google Scholar]
  • A. Zamboni, F. Bezzo and N. Shah, Spatially explicit static model for the strategic design of future bioethanol production systems. 2. Multi-objective environmental optimization. Energy Fuels 23 (2009) 5134–5143. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.