Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 759 - 774
Published online 22 February 2024
  • A.J. Lotka, Elements of Physical Biology. Williams and Wilkins Company (1925). [Google Scholar]
  • P. Voltera, Lessons in Mathematical Theory of the Struggle for Life. Paris Seuil (1937). [Google Scholar]
  • C. Clark, Bio-Economics Modelling Fisheries Management. Wiley, New York (USA) (1990). [Google Scholar]
  • C. Clark, Mathematical Bio-Economics. John Wiley and Sons Inc, New York NY (USA) (1990). [Google Scholar]
  • X. Zhang, Z. Shuai and K. Wang, Optimal impulsive harvesting policy for single population. Nonlinear Anal. Real World App. 4 (2003) 639–651. [CrossRef] [Google Scholar]
  • M. Fan and K. Wang, Optimal hervesting policy for single population with periodic coefficients. Math. Biosci. 152 (1998) 165–178. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • J. Wang and K. Wang, Optimal control hervesting for single population. Appl. Math. Comput. 156 (2004) 235–247. [MathSciNet] [Google Scholar]
  • T.K. Kar, Modelling and analysis of a harvested prey–predator system incorporating a prey refuge. J. Comput. Appl. Math. 185 (2006) 19–33. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Chakraborty, S. Das and T. Kar, Optimal control of effort of a stage structured prey–predator fishery model with hervesting. Nonlinear Anal. Real World App. 12 (2011) 3452–3467. [CrossRef] [Google Scholar]
  • K. Chakraborty, M. Chakraborty and T. Kar, Optimal control of hervest and bifurcation of a prey-preadator model with stage structure. Appl. Math. Comput. 217 (2011) 8778–8792. [MathSciNet] [Google Scholar]
  • Y. Qu and J. Wei, Bifurcation analysis in a time delay model for prey–predator growth with stage-structure. Nonlinear Dyn. 49 (2007) 285–294. [CrossRef] [Google Scholar]
  • J.R. Beddington and R.M. May, Hervesting natural population in a randomly fluctuating environment. Science 197 (1977) 463–465. [CrossRef] [PubMed] [Google Scholar]
  • W. Li, K. Wang and H. Su, Optimal harvesting policy for logistic population model. Appl. Math. Comput. 218 (2011) 157–162. [MathSciNet] [Google Scholar]
  • R. Wu, X. Zou and K. Wang, Asymptotic properties of a stochastic lotka-volterra cooperative system with impulsive perturbations. Nonlinear Dyn. 77 (2014) 807–817. [CrossRef] [Google Scholar]
  • M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments. J. Nonlinear Sci. 23 (2013) 751–775. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Lande, S. Engen and B.E. Saether, Optimal hervesting of fluctuating population with a risk of extinction. Am. Nat. 145 (1995) 728–745. [CrossRef] [Google Scholar]
  • C. Ji, D. Jiang and X. Li, Quantitative analysis of a stochastic ratio-dependent predator-prey system. J. Comput. Appl. Math. 235 (2011) 1326–1341. [CrossRef] [MathSciNet] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]
  • S. Faizi, W. Salabun, T. Rashid, J. Watróbski and S. Zafar, Group decision-making for hesitant fuzzy sets based on characteristic objects method. Symmetry 9 (2017) 136. [CrossRef] [Google Scholar]
  • J. Chen and X. Huang, Dual hesitant fuzzy probability. Symmetry 9 (2017) 52. [CrossRef] [Google Scholar]
  • W. Salabun and A. Piegat, Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. 48 (2017) 557–571. [CrossRef] [Google Scholar]
  • M. Bucolo, L. Fortuna and M. La Rosa, Complex dynamics through fuzzy chains. IEEE Trans. Fuzzy Syst. 12 (2004) 289–295. [CrossRef] [Google Scholar]
  • S.L. Chang and L.A. Zadeh, On fuzzy mapping and control. IEEE Trans. Syst. Man Cybern. 2 (1972) 30–34. [CrossRef] [Google Scholar]
  • D. Dubois and H. Prade, Towards fuzzy differential calculus: part 3 differentiation. Fuzzy Sets Syst. 8 (1982) 225–233. [CrossRef] [Google Scholar]
  • M. Najariyan and M.H. Farahi, A new approach for solving a class of Fuzzy optimal control system under generalised Hukuhara differentiability. J. Franklin Inst. 352 (2015) 1836–1849. [CrossRef] [MathSciNet] [Google Scholar]
  • M. da Silva Peixoto, L.C. de Barros and R.C. Bassanezi, Predator-prey fuzzy model. Ecol. Modell. 214 (2008) 39–44. [CrossRef] [Google Scholar]
  • D. Pal, G. Mahapatra and G. Samanta, Optimal harvesting of prey–predator system with interval biological parameters a bio-economic model. Math. Biosci. 241 (2013) 181–187. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • A. De, M. Maity and M. Maiti, Stability analysis of combined project of fish, broiler and ducks: dynamical system in imprecise environment. Int. J. Biomath. 8 (2015) 1550067. [CrossRef] [Google Scholar]
  • A. De, K. Maity and G. Panigrahi, Fish and broiler optimal hervesting models in imprecise environment. Int. J. Biomath. 10 (2017) 1750115. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Wang, Stability analysis of predator-prey system with fuzzy impulsive control. J. Appl. Math. 2012 (2012) 715497. [Google Scholar]
  • D. Pal, G. Mahapatra and G. Samanta, Stability and bionomic analysis of fuzzy parameter based prey–predator harvesting model using UFM. Nonlinear Dyn. 79 (2015) 1939–1955. [CrossRef] [Google Scholar]
  • D. Khatua and K. Maity, Stability of fuzzy dynamical system based on quasi-level-wise system. J. Intell. Fuzzy Syst. 33 (2017) 3515–3528. [CrossRef] [Google Scholar]
  • S. Hati, A sustainable pollution control fuzzy production inventory model with imperfect and breakable items through Pontryagin Maximum principle. J. Intell. Fuzzy Syst. 45 (2023) 1587–1601. [CrossRef] [Google Scholar]
  • M. Mustafa, Z. Gong and M. Osman, The solution of fuzzy variational problem and fuzzy optimal control problem under granular differentiability concept. Int. J. Comput. Math. 98 (2021) 1495–1520. [CrossRef] [MathSciNet] [Google Scholar]
  • A. De, D. Khatua and S. Kar, Control the preservation cost of a fuzzy production inventory model of assortment items by using the granular differentiability approach. Comput. Appl. Math. 39 (2020) 1–22. [Google Scholar]
  • D. Khatua, K. Maity and S. Kar, A fuzzy production inventory control model using granular differentiability approach. Soft Comput. 25 (2021) 2687–2701. [CrossRef] [Google Scholar]
  • S. Hati and K. Maity, Pollution control multi-objective inventory model of product-process innovation with stock dependent demand and gathering knowledge accumulation in finite time horizon. Contemp. Issues Bus. Econ. 1 (2022) 83–100. [Google Scholar]
  • S. Hati and K. Maity, Reliability Dependent ImperfectProduction Inventory Optimal Control Fractional Order Model for Uncertain Environment Under Granular Differentiability. Fuzzy Inf. Eng. 14 (2022) 379–406. [CrossRef] [Google Scholar]
  • S. Hati and K. Maity, Product process innovation model of fuzzy optimal control of nonlinear system with finite time horizon under granular differentiability concept. OPSEARCH 60 (2023) 753–775. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Najariyan and Y. Zhao, On the stability of fuzzy linear dynamical systems. J. Franklin Inst. 357 (2020) 5502–5522. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Najariyan and L. Qiu, Interval type-2 fuzzy differential equations and stability. IEEE Trans. Fuzzy Syst. 30 (2022) 2915–2929. [CrossRef] [Google Scholar]
  • D.W. Jordon and P. Smith, Nonlinear Ordinary Differential Equations. Oxford University Press, Oxford (2009). [Google Scholar]
  • H.J. Zimmermann, Fuzzy Set Theory and Its Application. Spinger Business Economics (2001). [CrossRef] [Google Scholar]
  • B. Bede and L. Stefanini, Generalized differentiability of fuzzy valued function. Fuzzy Set Syst. 230 (2013) 119–141. [CrossRef] [Google Scholar]
  • M. Mazandarani, N. Pariz and A.V. Kamyad, Granular differentiability of Fuzzy-Number-Valued function. IEEE Trans. Fuzzy Syst. 26 (2018) 310–323. [CrossRef] [Google Scholar]
  • M. Mazandarani and N. Pariz, Sub-optimal control of fuzzy linear dynamical system under granular differentiability concept. ISA Trans. 76 (2018) 1–17. [CrossRef] [Google Scholar]
  • L.A. Zadeh, A note on Z-number. Inf. Sci. 181 (2011) 2923–2932. [CrossRef] [Google Scholar]
  • M. Mazandarrini and Y. Zhao, Z-differential equation. J. IEEE Trans. Fuzzy Syst. 28 (2019) 462–473. [Google Scholar]
  • B. Kang, D. Wei, Y. Li and Y. Deng, A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 3 (2012) 703–709. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.