Issue
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Graphs, Combinatorics, Algorithms and Optimization
Page(s) 579 - 590
DOI https://doi.org/10.1051/ro/2024005
Published online 19 February 2024
  • N. Alon, On the capacity of digraphs. Eur. J. Comb. 19 (1998) 1–5. [CrossRef] [Google Scholar]
  • L. Babai and E.M. Luks, Canonical labeling of graphs, in Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25–27 April, 1983. ACM, Boston, Massachusetts, USA (1983) 171–183. [Google Scholar]
  • A. Bondy and U.S.R. Murty, Graph Theory. Graduate Texts in Mathematics. Springer London (2011). [Google Scholar]
  • O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph. Discrete Math. 206 (1999) 77–89. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Coelho, L. Faria, S. Gravier and S. Klein, Oriented coloring in planar, bipartite, bounded degree 3 acyclic oriented graphs. Discret. Appl. Math. 198 (2016) 109–117. [CrossRef] [Google Scholar]
  • E.M.M. Coelho, H. Coelho, L. Faria, M.D.P. Ferreira, S. Gravier and S. Klein, On the oriented coloring of the disjoint union of graphs, in Combinatorial Algorithms – 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings. Vol. 12757 of Lecture Notes in Computer Science, edited by P. Flocchini and L. Moura. Springer (2021) 194–207. [CrossRef] [Google Scholar]
  • J.-F. Culus and M. Demange, Oriented coloring: complexity and approximation, in International Conference on Current Trends in Theory and Practice of Computer Science. Springer (2006) 226–236. [Google Scholar]
  • P. Erdos and L. Moser, On the representation of directed graphs as unions of orderings. Math. Inst. Hung. Acad. Sci. 9 (1964) 125–132. [Google Scholar]
  • F. Harary and L. Moser, The theory of round robin tournaments. Am. Math. Monthly 73 (1966) 231–246. [CrossRef] [Google Scholar]
  • F. Havet and S. Thomassé, Oriented hamiltonian paths in tournaments: a proof of rosenfeld’s conjecture. J. Comb. Theory Ser. B 78 (2000) 243–273. [CrossRef] [Google Scholar]
  • W. Klostermeyer and G. MacGillivray, Homomorphisms and oriented colorings of equivalence classes of oriented graphs. Discret. Math. 274 (2004) 161–172. [CrossRef] [Google Scholar]
  • T.H. Marshall, Homomorphism bounds for oriented planar graphs of given minimum girth. Graphs Comb. 29 (2013) 1489–1499. [CrossRef] [Google Scholar]
  • P. Ochem and A. Pinlou, Oriented colorings of partial 2-trees. Inf. Proc. Lett. 108 (2008) 82–86. [CrossRef] [Google Scholar]
  • K.B. Reid and E.T. Parker, Disproof of a conjecture of erdös and moser on tournaments. J. Comb. Theory 9 (1970) 225–238. [CrossRef] [Google Scholar]
  • A. Sánchez-Flores, On tournaments and their largest transitive subtournaments. Graphs Comb. 10 (1994) 367–376. [CrossRef] [Google Scholar]
  • A. Sanchez-Flores, On tournaments free of large transitive subtournaments. Graphs Comb. 14 (1998) 181–200. [CrossRef] [Google Scholar]
  • É. Sopena, The chromatic number of oriented graphs. J. Graph Theory 25 (1997) 191–205. [CrossRef] [MathSciNet] [Google Scholar]
  • É. Sopena, Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs. Discuss. Math. Graph Theory 32 (2012) 517–533. [CrossRef] [MathSciNet] [Google Scholar]
  • É. Sopena, Homomorphisms and colourings of oriented graphs: an updated survey. Discret. Math. 339 (2016) 1993–2005. [CrossRef] [Google Scholar]
  • Y.N. Sotskov, Mixed graph colorings: a historical review. Mathematics 8 (2020) 385. [CrossRef] [Google Scholar]
  • R. Stearns, The voting problem. Am. Math. Monthly 66 (1959) 761–763. [CrossRef] [Google Scholar]
  • A. Thomason, Paths and cycles in tournaments. Trans. Am. Math. Soc. 296 (1986) 167–180. [CrossRef] [Google Scholar]
  • F. Wagner, Hardness results for isomorphism and automorphism of bounded valence graphs, in SOFSEM 2008: Volume II (2008) 131–140. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.