Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 457 - 474
Published online 19 February 2024
  • J. Gao, P. Hou, J. Zhai, Y. Chen and H. Gao, Promote the “Dual Circulation” through carbon peak and neutrality to realize high-quality economic development. Chin. Dev. 21 (2021) 47–52. [Google Scholar]
  • G.C. Unruh, Understanding carbon lock-in. Energy Policy 28 (2000) 817–830. [CrossRef] [Google Scholar]
  • D. McKie and C. Galloway, Climate change after denial: global reach, global responsibilities, and public relations. Publ. Relat. Rev. 33 (2007) 368–376. [CrossRef] [Google Scholar]
  • G. Trencher, A. Rinscheid, M Duygan, N. Truong and J. Asuka, Revisiting carbon lock-in in energy systems: explaining the perpetuation of coal power in Japan. Energy Res. Soc. Sci. 69 (2020) 101770. [CrossRef] [Google Scholar]
  • R. Karlsson, Carbon lock-in, rebound effects and China at the limits of statism. Energy Policy 51 (2012) 939–945. [CrossRef] [Google Scholar]
  • V. Fisch-Romito, C. Guivarch, F. Creutzig, J.C. Minx and M.W. Callaghan, Systematic map of the literature on carbon lock-in induced by long-lived capital. Environ. Res. Lett. 16 (2021) 053004. [CrossRef] [Google Scholar]
  • G. van der Meijden and S. Smulders, Technological change during the energy transition. Macroecon. Dyn. 22 (2018) 805–836. [CrossRef] [Google Scholar]
  • H. Li, Carbon lock-in and carbon unlocking: a perspective of technological regime evolution. Chin. Soft Sci. 4 (2013) 39–49. [Google Scholar]
  • P.A. Driscoll, Breaking carbon lock-in: path dependencies in large-scale transportation infrastructure projects. Plan. Pract. Res. 29 (2014) 317–330. [CrossRef] [Google Scholar]
  • Y. Zhu, Analysis of carbon locking and the causes of carbon locking dilemma – based on technology and institutional perspectives. Business 13 (2016) 280. [Google Scholar]
  • K.C. Seto, S.J. Davis, R.B. Mitchell, E.C. Stokes, G. Unruh and D. Urge-Vorsat, Carbon lock-in: types, causes, and policy implications. Annu. Rev. Env. Res. 41 (2016) 425–452. [CrossRef] [Google Scholar]
  • X. Wang, L. Zhang, Y. Qin and J. Zhang, Analysis of China’s manufacturing industry carbon lock-in and its influencing factors. Sustainability 12 (2020) 1502. [CrossRef] [Google Scholar]
  • H. Niu and Z. Liu, Construction of measurement indicator system of China’s carbon lock-in effect and its empirical analysis. Ecol. Econ. 37 (2021) 22–37. [Google Scholar]
  • H. Niu and Z. Liu, Measurement on carbon lock-in of China based on RAGA-PP model. Carbon Manage. 12 (2021) 451–463. [CrossRef] [Google Scholar]
  • G.C. Unruh, Escaping carbon lock-in. Energy Policy 30 (2002) 317–325. [CrossRef] [Google Scholar]
  • H. van der Loos, S.O. Negro and M.P. Hekkert, Low-carbon lock-in? Exploring transformative innovation policy and offshore wind energy pathways in the Netherlands. Energy Res. Soc. Sci. 69 (2020) 101640. [CrossRef] [Google Scholar]
  • D. Li, Z. Zhou, L. Cao, K. Zhao, B. Li and C. Ding, What drives the change in China’s provincial industrial carbon unlocking efficiency? Evidence from a geographically and temporally weighted regression model. Sci. Total Environ. 856 (2023) 158971. [CrossRef] [Google Scholar]
  • L. Mattauch, F. Creutzig and O. Edenhofer, Avoiding carbon lock-in: policy options for advancing structural change. Econ. Model. 50 (2015) 49–63. [CrossRef] [Google Scholar]
  • M. Kalkuhl, O. Edenhofer and K. Lessmann, Learning or lock-in: optimal technology policies to support mitigation. Res. Energy Econ. 34 (2012) 1–23. [CrossRef] [Google Scholar]
  • C.F. Tang and E.C. Tan, Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia. Appl. Energy 104 (2013) 297–305. [CrossRef] [Google Scholar]
  • Y. Xu, J. Guo and S. Liu, An empirical study on Chinese carbon lock-in and unlock-in path under the background of low-carbon economy. Soft Sci. 10 (2015) 33–38. [Google Scholar]
  • W. Ruan and Q. Zhang, The internal mechanism of high carbon lock-in for our country’s resource-based cities and the path of unlocking: a case study of Huaibei City, Anhui Province. Mod. Urban Res. 2 (2013) 94–99. [Google Scholar]
  • Y. Xu, B. Dong, Y. Chen and H. Qin, Effect of industrial transfer on carbon lock-in: a spatial econometric analysis of Chinese cities. J. Environ. Planning Man. 65 (2022) 1024–1055. [CrossRef] [Google Scholar]
  • W. Jin, Path dependence, self-fulfilling expectations, and carbon lock-in. Res. Energy Econ. 66 (2021) 101263. [CrossRef] [Google Scholar]
  • F. Zhao, Z. Hu and X. Zhao, Does innovative city construction improve urban carbon unlocking efficiency? Evidence from China. Sustain. Cities Soc. 92 (2023) 104494. [CrossRef] [Google Scholar]
  • Y. Chen, D. Wang, W. Zhu, Y. Hou, D. Liu, C. Ma, T. Li and Y. Yuan, Effective conditions for achieving carbon unlocking targets for transport infrastructure development-joint analysis based on PLS-SEM and NCA. Int. J. Environ. Res. Publ. Health 20 (2023) 1170. [CrossRef] [Google Scholar]
  • Y. Chen, M. Shi and C. Ma, Spatial and temporal evolution of coupling effect of carbon locking system in provincial transportation infrastructure. J. Railway Sci. Eng. 20 (2023) 1127–1138. [Google Scholar]
  • Z. Liang, H. Ang and D. Hu, Study on micro-driving mechanism of “Regional Carbon Unlocking”. Chin. Soft Sci. 4 (2020) 132–141. [Google Scholar]
  • S. Hu, P. Zhang and T. Wei, Financial measures to reduce carbon emissions in Britain, Japan and the United States: a SWOT analysis. Int. J. Environ. Res. Publ. Health 19 (2022) 10771. [CrossRef] [Google Scholar]
  • J. Lou, N. Hultman, A. Patwardhan and Y.L. Qiu, Integrating sustainability into climate finance by quantifying the co-benefits and market impact of carbon projects. Commun. Earth Environ. 3 (2022) 1–11. [CrossRef] [Google Scholar]
  • U. Nyambuu and W. Semmler, Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget. Econ Model. 84 (2020) 367–376. [CrossRef] [Google Scholar]
  • B. Li, Y. Geng, X. Xia and D. Qiao, The impact of government subsidies on the low-carbon supply chain based on carbon emission reduction level. Int. J. Environ. Res. Publ. Health 18 (2021) 7603. [CrossRef] [Google Scholar]
  • J. Zhang, Q. Liu and X. Ding, Research on carbon unlocking efficiency of the Yangtze River EconomicBelt: based on SE-DEA-Malmquist model. East Chin. Econ. Manage. 35 (2021) 1–10. [Google Scholar]
  • A. Goek, J. Rigby and P. Shapira, The impact of research funding on scientific outputs: evidence from six smaller European countries. J. Assoc. Inf. Sci. Tech. 67 (2016) 715–730. [CrossRef] [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • K. Tone and B.K. Sahoo, Degree of scale economies and congestion: a unified DEA approach. Eur. J. Oper. Res. 158 (2004) 755–772. [CrossRef] [Google Scholar]
  • R. Fare, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 84 (1994) 66–83. [Google Scholar]
  • L. Wang, Research on the impact of transportation infrastrutrue on regional carbon emission. Ph.D. thesis, Haebin Institute of Technology, China (2019). [Google Scholar]
  • L. Du, Factors affecting carbon dioxide emissions in China: a study based on provincial panel data. South Chin. J. Econ. 11 (2010) 20–33. [Google Scholar]
  • Y. Chen, Q. Luo and C. Ma, Carbon unlocking efficiency study based on super-efficiency SBM-Malmquist. figshare. Dataset (2024). DOI: 10.6084/m9.figshare.24903588. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.