Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 475 - 510
Published online 19 February 2024
  • S.A. Abeyratne and R.P. Monfared, Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 5 (2016) 1–10. [Google Scholar]
  • P. Aghion, N. Bloom, R. Blundell, R. Griffith and P. Howitt, Competition and innovation: An inverted-U relationship. Q. J. Econ. 120 (2005) 701–728. [Google Scholar]
  • A. Ahmed, M. Alshurideh, B. Al Kurdi and S.A. Salloum, Digital transformation and organizational operational decision making: A systematic review. AISC 1261 (2021) 708–719. [Google Scholar]
  • M. Ardolino, M. Rapaccini, N. Saccani, P. Gaiardelli, G. Crespi and C. Ruggeri, The role of digital technologies for the service transformation of industrial companies. Int. J. Prod. Res. 56 (2018) 2116–2132. [CrossRef] [Google Scholar]
  • G. Bailey, C. Moss and D. Kurz, Digital Supply Chain Transformation Guide: Essential Metrics. Digital Supply Chain Institute (2017). [Google Scholar]
  • P. Barge, A. Biglia, L. Comba, D.R. Aimonino, C. Tortia and P. Gay, Radio frequency identification for meat supply-chain digitalisation. Sensors 20 (2020) 4957. [CrossRef] [PubMed] [Google Scholar]
  • I. Bekmurzaev, A. Kurbanov, T. Kurbanov, V. Plotnikov and E. Ushakova, Digital technologies of marketing logistics and risks of their implementation in supply chain. IOP Conf. Ser. Mater. Sci. Eng. C. 940 (2020) 012064. [CrossRef] [Google Scholar]
  • L.M. Bennett, H. Gadlin and C. Marchand, Collaboration Team Science: Field Guide. US Department of Health & Human Services, National Institutes of Health (2018). [Google Scholar]
  • B. Bhargava, R. Ranchal and L. Ben Othmane, Secure information sharing in digital supply chains. In 3rdIEEE IACC, Ghaziabad, INDIA (2013) 1636–1640. [Google Scholar]
  • G. Büyüközkan and F. Göer, Digital supply chain: Literature review and a proposed framework for future research. Comput. Ind. 97 (2018) 157–177. [CrossRef] [Google Scholar]
  • G. Büyüközkan and F. Göer, An extension of ARAS methodology under interval V alued intuitionistic fuzzy environment for digital supply chain. Appl. Soft. Comput. 69 (2018) 634–654. [CrossRef] [Google Scholar]
  • G. Büyükozkan, G. Tüfeki and D. Uztürka, Evaluating blockchain requirements for effective digital supply chain management. Int. J. Prod. Econ. 242 (2021) 108309. [CrossRef] [Google Scholar]
  • H. Cañas, J. Mula, F. Campuzano-Bolarn and R. Poler, A conceptual framework for smart production planning and control in Industry 4.0. Comput. Ind. Eng. 173 (2022) 108659. [CrossRef] [Google Scholar]
  • B.K. Chae, C. Yang, D. Olson and C. Sheu, The impact of advanced analytics and data accuracy on operational performance: a contingent resource based theory (RBT) perspective. Decis. Support Syst. 59 (2014) 119–126. [CrossRef] [Google Scholar]
  • B. Chakravorti, A. Bhalla and R.S. Chaturvedi, Which Countries Are Leading the Data Economy? Harvard Business Review (2019). [Google Scholar]
  • M.-H. Chen, H. Wei, M. Wei, H. Huang, C.H. Su, Modeling a green supply chain in the hotel industry: An evolutionary game theory approach. Int. J. Hosp. Manag. 92 (2021) 102716. [CrossRef] [Google Scholar]
  • J. Chod, N. Trichakis, G. Tsoukalas, H. Aspegren and M. Weber, On the financing benefits of supply chain transparency and blockchain adoption. Manage. Sci. 66 (2020) 4359–4919. [Google Scholar]
  • T.M. Choi, S.Y. Luo, Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes. Transp. Res. Part E: Logist. Transp. Rev. 13 (2019) 139–152. [CrossRef] [Google Scholar]
  • T.H. Davenport and J. Dych, Big data in big companies. Int. Intell. Data Anal. 3 (2013) 1–31. [Google Scholar]
  • P. Dutta, T.-M. Choi, S. Somani and R. Butala, Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part E: Logist. Transp. Rev. 142 (2020) 102067. [CrossRef] [Google Scholar]
  • I. Ehie and L.M.D. Ferreira, Conceptual development of supply chain digitalization framework. IFAC-PapersOnLine 52 (2019) 2338–2342. [CrossRef] [Google Scholar]
  • E. Forghani, R. Sheikh, S. Mohammad Hassan Hosseini and S.S. Sana, The impact of digital marketing strategies on customer’s buying behavior in online shopping using the rough set theory. Int. J. Syst. Assur. Eng. Manag. 13 (2022) 625–640. [CrossRef] [Google Scholar]
  • P.D. Giovanni, Blockchain and smart contracts in supply chain management: A game theoretic model. Int. J. Prod. Econ. 228 (2020) 107855. [CrossRef] [Google Scholar]
  • A. Hanelt, R. Bohnsackb, D. Marz and C.U.A. Marante, A systematic review of the literature on digital transformation: insights and implications for strategy and organizational change. J. Manag. Stud. 58 (2021) 1159–1197. [CrossRef] [Google Scholar]
  • J. Holmström and J. Partanen, Digital manufacturing-driven transformations of service supply chains for complex products. Supply Chain Manag. Int. J. 19 (2014) 421–430. [CrossRef] [Google Scholar]
  • D. Kindstrom and C. Kowalkowski, Service innovation in product-centric firms: a multidimensional business model perspective. J. Bus. Ind. Mark. 29 (2015) 96–111. [Google Scholar]
  • M.A. Koseoglu, I.L. Tetteh and B. King, Decision tools: A systematic literature review, co-citation analysis and future research directions. Nankai Bus. Rev. Int. 10 (2019) 591–617. [CrossRef] [Google Scholar]
  • J. Kroh, H. Luetjen, D. Globocnik and C. Schultz, Use and efficacy of information technology in innovation processes: the specific role of servitization. J. Prod. Innov. Manage. 35 (2018) 720–741. [CrossRef] [Google Scholar]
  • J. Lee, K. Kim, J. Kim and J.H. Wang, The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective. Technovation 109 (2022) 102327. [CrossRef] [Google Scholar]
  • D. Li and J.M. Cruz, Multiperiod supply chain network dynamics under investment in sustainability, externality cost, and consumers’ willingness to pay. Int. J. Prod. Econ. 247 (2022) 108441. [CrossRef] [Google Scholar]
  • Y. Li, T.J. Yang and Y. Zhang, Evolutionary game theory-based system dynamics modeling for community solid waste classification in China. Util. Policy 79 (2022) 101451. [CrossRef] [Google Scholar]
  • X. Liu, Q. Pan and M. He, Promotion of cooperation in evolutionary game dynamics with local information. J. Theor. Biol. 437 (2018) 1–8. [CrossRef] [Google Scholar]
  • W. Liu, S. Long, D. Xie, Y. Liang and J. Wang, How to govern the big data discriminatory pricing behavior in the platform service supply chain?An examination with a three-party evolutionary game model. Int. J. Prod. Econ. 231 (2021) 107910. [CrossRef] [Google Scholar]
  • W.H. Liu, S. Wei, K.W. Li and S. Long, Supplier participation in digital transformation of a two-echelon supply chain: Monetary and symbolic incentives. Transp. Res. Part E: Logist. Transp. Rev. 161 (2022) 102688. [CrossRef] [Google Scholar]
  • J. Lohmer, N. Bugert and R. Lasch, Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study. Int. J. Prod. Econ. 228 (2020) 107882. [CrossRef] [Google Scholar]
  • F. Longo, L. Nicoletti, A. Padovano, d’. Gianfranco and F. Marco, Blockchain-enabled supply chain: An experimental study. Comput. Ind. Eng. 136 (2019) 57–69. [CrossRef] [Google Scholar]
  • R.L. Luo, L. Zhou, Y. Song and T.J. Fan, Evaluating the impact of carbon tax policy on manufacturing and remanufacturing decisions in a closed-loop supply chain. Int. J. Prod. Econ. 245 (2022) 108408. [CrossRef] [Google Scholar]
  • F. Mai, J. Zhang and X. Sun, Dynamic analysis of pricing model in a book supply chain. Int. J. Prod. Econ. 233 (2021) 108026. [CrossRef] [Google Scholar]
  • M. Nasiri, J. Ukko, M. Saunila and T. Rantala, Managing the digital supply chain: The role of smart technologies. Technovation 96–97 (2020) 102121. [CrossRef] [Google Scholar]
  • B.Z. Niu, J. Dong and Y.Q. Liu, Incentive alignment for blockchain adoption in medicine supply chains. Transp. Res. Part E: Logist. Transp. Rev. 152 (2021) 102276. [CrossRef] [Google Scholar]
  • Y. Omran, M. Henke, R. Heines and E. Hofmann, Blockchain-driven supply chain finance: Towards a conceptual frame-work from a buyer perspective. 26th Annual Conference of IPSERA (2017) 1–15. [Google Scholar]
  • M. Peterson, An Introduction to Decision Theory. Cambridge University Press Cambridge (2017). [CrossRef] [Google Scholar]
  • H. Pun, J.M. Swaminathan and P. Hou, Blockchain adoption for combating deceptive counterfeits. Prod. Oper. Manag. 30 (2021) 864–882. [CrossRef] [Google Scholar]
  • M.D. Roy and S.S. Sana, Multi-echelon green supply chain model with random defectives, remanufacturing and rework under setup cost reduction and variable transportation cost. Sadhana-Acad. P. Eng. S. 46 (2021) 211. [CrossRef] [Google Scholar]
  • S. Saberi, J.M. Cruz, J. Sarkis and A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option. Eur. J. Oper. Res. 266 (2018) 934–949. [CrossRef] [Google Scholar]
  • S.S. Sana, A system dynamics model of financial flow in supply chains: a case study. RAIRO:RO 52 (2018) 187–204. [CrossRef] [EDP Sciences] [Google Scholar]
  • S.S. Sana, Price competition between green and non green products under corporate social responsible firm. J. Retail. Consum. Serv. 55 (2020) 102118. [CrossRef] [Google Scholar]
  • S.S. Sana, A structural mathematical model on two echelon supply chain system. Ann. Oper. Res. 315 (2022) 1997–2025. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Shen, X. Xu and Q. Yuan, Selling secondhand products through an online platform with blockchain. Transp. Res. Part E: Logist. Transp. Rev. 142 (2020) 102066. [CrossRef] [Google Scholar]
  • M. Sidorov, M.T. Ong, R.V. Sridharan, J. Nakamura, R. Ohmura and J.H. Khor, Ultralight weight mutual authentication RFID protocol for blockchain enabled supply chains. IEEE Access 7 (2019) 7273–7285. [CrossRef] [Google Scholar]
  • H.X. Sun, Y. Wan, L.L. Zang and Z. Zhou, Evolutionary game of the green investment in a two-echelon supply chain under a government subsidy mechanism. J. Clean. Prod. 235 (2019) 1315–1326. [CrossRef] [Google Scholar]
  • B. Tabrizi, E. Lam, K. Girard and V. Irvin, Digital transformation is not about technology. Harv. Bus. Rev. 13 (2019) 1–6. [CrossRef] [Google Scholar]
  • D.P. Taylor and L.B. Jonker, Evolutionarily stable strategies and game dynamics. Math. Biosci. 40 (1978) 145–156. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Tokatli, Global sourcing: insights from the global clothing industry the case of Zara, a fast fashion retailer. J. Geogr. Sci. 8 (2008) 21–38. [Google Scholar]
  • J.J.Y. Xu, J. Cao, Y.F. Wang, X.R. Shi and J.Y. Zeng, Evolutionary game on government regulation and green supply chain decision-making. Energies 13 (2020) 620. [CrossRef] [Google Scholar]
  • M. Yu, J.M. Cruz, D. Li and A.H. Masoumi, A multiperiod competitive supply chain framework with environmental policies and investments in sustainable operations. Eur. J. Oper. Res. 300 (2022) 112–123. [CrossRef] [Google Scholar]
  • E. Zarafshan, S. Gholami, R. Sheikh and S.S. Sana, Resource planning system for organisations - a soft computing approach. Int. J. Serv. Econ. Manag. 12 (2021) 272–293. [Google Scholar]
  • P.J. Zblbst, K.W. Green, V.E. Sower and G. Baker, RFID utilization and information sharing the impact on supply chain performance. J. Bus. Ind. Mark. 25 (2010) 582–589. [CrossRef] [Google Scholar]
  • S. Zhang, C. Wang and C. Yu, The evolutionary game analysis and simulation with system dynamics of manufacturer’s emissions abatement behavior under cap-and-trade regulation. Appl. Math. Comput. 355 (2019) 343–355. [MathSciNet] [Google Scholar]
  • G. Zhu, G.Z. Pan and W.W. Zang, Evolutionary game theoretic analysis of low carbon investment in supply chains under governmental subsidies. Int. J. Environ. Res. Public Health 15 (2018) 2465. [CrossRef] [Google Scholar]
  • C. Zhu, R. Fan, M. Luo, J. Lin and Y. Zhang, Urban food waste management with multi-agent participation: A combination of evolutionary game and system dynamics approach. J. Clean. Prod. 275 (2020) 123937. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.