Open Access
RAIRO-Oper. Res.
Volume 58, Number 1, January-February 2024
Page(s) 933 - 946
Published online 04 March 2024
  • J.R. Artalejo, A. Economou and M.J. Lopez-Herrero, Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Math. Biosci. Eng. 4 (2007) 573–594. [CrossRef] [MathSciNet] [Google Scholar]
  • F.P. Barbhuiya and U.C. Gupta, Discrete-time queue with batch renewal input and random serving capacity rule: GIX /GeoY /1. Queueing Syst. 91 (2019) 347–365. [Google Scholar]
  • F.P. Barbhuiya, N. Kumar and U.C. Gupta, Batch renewal arrival process subject to geometric catastrophes. Methodol. Comput. Appl. Prob. 21 (2019) 69–83. [CrossRef] [Google Scholar]
  • P.J. Brockwell, J. Gani and S.I. Resnick, Birth, immigration and catastrophe processes. Adv. Appl. Probab. 14 (1982) 709–731. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Dabrowski, Catastrophic event phenomena in communication networks: A survey. Comput. Sci. Rev. 18 (2015) 10–45. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Economou, The compound Poisson immigration process subject to binomial catastrophes. J. Appl. Probab. 41 (2004) 508–523. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Economou and A. Gómez-Corral, The batch Markovian arrival process subject to renewal generated geometric catastrophes. Stoch. Models 23 (2007) 211–233. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Elaydi, An Introduction to Difference Equations. Springer (2005). [Google Scholar]
  • D. Gross and C.M. Harris, Fundamentals of Queueing Theory. Wiley (1985). [Google Scholar]
  • S. Kapodistria, T. Phung-Duc and J. Resing, Linear birth/immigration-death process with binomial catastrophes. Probab. Eng. Inf. Sci. 30 (2016) 79–111. [CrossRef] [Google Scholar]
  • Y. Komota, S. Nogami and Y. Hoshiko, Analysis of the GI/G/1 queue by the supplementary variables approach. Electron. Commun. Jpn. (Part I: Commun.) 66 (1983) 10–19. [CrossRef] [Google Scholar]
  • N. Kumar and U.C. Gupta, Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes. Ann. Oper. Res. 287 (2020) 257–283. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Kumar and U.C. Gupta, Analysis of a population model with batch Markovian arrivals influenced by Markov arrival geometric catastrophes. Commun. Stat. - Theory Methods 50 (2021) 3137–3158. [CrossRef] [Google Scholar]
  • N. Kumar, F.P. Barbhuiya and U.C. Gupta, Analysis of a geometric catastrophe model with discrete-time batch renewal arrival process. RAIRO:RO 54 (2020) 1249–1268. [CrossRef] [EDP Sciences] [Google Scholar]
  • N. Kumar, U.C. Gupta and G. Singh, Computational and numerical investigation of the batch Markovian arrival process subject to renewal generated geometric catastrophes. Int. J. Appl. Comput. Math. 7 (2021) 1–34. [CrossRef] [MathSciNet] [Google Scholar]
  • E.G. Kyriakidis, A Markov decision algorithm for optimal pest control through uniform catastrophes. Eur. J. Oper. Res. 64 (1993) 38–44. [CrossRef] [Google Scholar]
  • A. Logachov, O. Logachova and A. Yambartsev, Large deviations in a population dynamics with catastrophes. Stat. Probab. Lett. 149 (2019) 29–37. [CrossRef] [Google Scholar]
  • A. Maity, U.C. Gupta and N. Kumar, Performance analysis of a discrete-time queue with versatile batch transmission rule under batch size sensitive policy. Queueing Models Serv. Manag. 3 (2020) 203–234. [Google Scholar]
  • S. Pradhan and U.C. Gupta, Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process. Ann. Oper. Res. 277 (2019) 161–196. [Google Scholar]
  • M. Spiegel, Theory and Problems of Calculus of Finite Differences and Difference Equations (Schaum’s Outline Series). McGraw-Hill Book Company (1971). [Google Scholar]
  • M. Yajima and T. Phung-Duc, A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes. Perform. Eval. 129 (2019) 2–14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.