Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1807 - 1833
DOI https://doi.org/10.1051/ro/2024047
Published online 16 April 2024
  • N. Ahmady, M. Azadi, S.A.H. Sadeghi and R.F. Saen, A novel fuzzy data envelopment analysis model with double frontiers for supplier selection. Int. J. Logistics Res. App. 16 (2013) 87–98. [Google Scholar]
  • S. Assani, J. Jiang, R. Cao and F. Yang, Most productive scale size decomposition for multi-stage systems in data envelopment analysis. Comput. Ind. Eng. 120 (2018) 279–287. [Google Scholar]
  • M. Azadi and R.F. Saen, Developing a new chance-constrained DEA model for supplier’s selection in the presence of undesirable outputs. Int. J. Oper. Res. 13 (2012) 44–66. [Google Scholar]
  • M. Azadi, M. Jafarian, R.F. Saen and S.M. Mirhedayatian, A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 54 (2015) 274–285. [Google Scholar]
  • T. Badiezadeh, R.F. Saen and T. Samavati, Assessing sustainability of supply chains by double frontier network DEA: a big data approach. Comput. Oper. Res. 98 284–290. [Google Scholar]
  • R.D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. [Google Scholar]
  • E. Boudaghi and R.F. Saen, Developing a model for determining optimal η in DEA-discriminant analysis for predicting suppliers’ group membership in supply chain. Opsearch 52 (2015) 134–155. [Google Scholar]
  • E. Boudaghi and R.F. Saen, Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Comput. Oper. Res. 89 (2018) 348–359. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • S.M. Chen, Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets Syst. 64 (1994) 31–38. [Google Scholar]
  • Y. Chen, L. Liang and J. Zhu, Equivalence in two-stage DEA approaches. Eur. J. Oper. Res. 193 (2009) 600–604. [Google Scholar]
  • W.D. Cook, J. Zhu, G. Bi and F. Yang, Network DEA: additive efficiency decomposition. Eur. J. Oper. Res. 207 (2010) 1122–1129. [Google Scholar]
  • W.W. Cooper, K.S. Park and J.T. Pastor, RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J. Prod. Anal. 11 (1999) 5–42. [Google Scholar]
  • M. Demartini, C. Pinna, B. Aliakbarian, F. Tonelli and S. Terzi, Soft drink supply chain sustainability: a case based approach to identify and explain best practices and key performance indicators. Sustainability 10 (2018) 3540. [Google Scholar]
  • W. Deng, L. Feng, X. Zhao and Y. Lou, Effects of supply chain competition on firms’ product sustainability strategy. J. Cleaner Prod. 275 (2020) 124061. [Google Scholar]
  • R. Eslami, M. Khodabakhshi, G.R. Jahanshahloo, F.H. Lotfi and M. Khoveyni, Estimating most productive scale size with imprecise-chance constrained input-output orientation model in data envelopment analysis. Comput. Ind. Eng. 63 (2012) 254–261. [Google Scholar]
  • G.R. Faramarzi, M. Tavassoli and R. Farzipoor Saen, Network DEA: a new approach for determining component weights. Int. J. Manage. Sci. Eng. Manage. 9 (2014) 178–184. [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 120 (1957) 253–290. [Google Scholar]
  • A. Fathi and R.F. Saen, Assessing sustainability of supply chains by fuzzy Malmquist network data envelopment analysis: incorporating double frontier and common set of weights. Appl. Soft Comput. 113 (2021) 107923. [Google Scholar]
  • E. Giannakis and G. Zittis, Assessing the economic structure, climate change and decarbonisation in Europe. Earth Syst. Environ. 5 (2021) 621–633. [Google Scholar]
  • A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. [Google Scholar]
  • C. Heydari, H. Omrani and R. Taghizadeh, A fully fuzzy network DEA-range adjusted measure model for evaluating airlines efficiency: a case of Iran. J. Air Transp. Manage. 89 (2020) 101923. [Google Scholar]
  • S.M. Hosseini-Motlagh, M.R.G. Samani and V. Shahbazbegian, Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty. Appl. Energy 280 (2020) 115921. [Google Scholar]
  • M. Izadikhah and R.F. Saen, Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Comput. Oper. Res. 100 (2018) 343–367. [Google Scholar]
  • M. Izadikhah, M. Azadi, V. Shokri Kahi and R. Farzipoor Saen, Developing a new chance constrained NDEA model to measure the performance of humanitarian supply chains. Int. J. Prod. Res. 57 (2019) 662–682. [Google Scholar]
  • M. Izadikhah, M. Azadi, M. Toloo and F.K. Hussain, Sustainably resilient supply chains evaluation in public transport: a fuzzy chance-constrained two-stage DEA approach. Appl. Soft Comput. 113 (2021) 107879. [Google Scholar]
  • G.R. Jahanshahloo and M. Khodabakhshi, Using input-output orientation model for determining most productive scale size in DEA. Appl. Math. Comput. 146 (2003) 849–855. [Google Scholar]
  • V. Jain and S.A. Khan, Application of AHP in reverse logistics service provider selection: a case study. Int. J. Bus. Innov. Res. 12 (2017) 94–119. [Google Scholar]
  • S. Javadinejad, K. Ostad-Ali-Askari and F. Jafary, Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Model. Earth Syst. Environ. 5 (2019) 1015–1023. [Google Scholar]
  • M. Kalantary and R.F. Saen, Assessing sustainability of supply chains: an inverse network dynamic DEA model. Comput. Ind. Eng. 135 (2019) 1224–1238. [Google Scholar]
  • C. Kao and S.N. Hwang, Efficiency measurement for network systems: IT impact on firm performance. Decis. Support Syst. 48 (2010) 437–446. [Google Scholar]
  • H. Kaur, S.P. Singh, J.A. Garza-Reyes and N. Mishra, Sustainable stochastic production and procurement problem for resilient supply chain. Comput. Ind. Eng. 139 (2020) 105560. [Google Scholar]
  • S.A.R. Khan, D.I. Godil, C.J.C. Jabbour, S. Shujaat, A. Razzaq and Z. Yu, Green data analytics, blockchain technology for sustainable development, and sustainable supply chain practices: evidence from small and medium enterprises. Ann. Oper. Res. (2021) 1–25. DOI: 10.1007/s10479-021-04275-x. [Google Scholar]
  • S.A.R. Khan, Z. Yu, H. Golpira, A. Sharif and A. Mardani, A state-of-the-art review and meta-analysis on sustainable supply chain management: future research directions. J. Cleaner Prod. 278 (2021) 123357. [Google Scholar]
  • M. Khodabakhshi, Estimating most productive scale size with stochastic data in data envelopment analysis. Econ. Model. 26 (2009) 968–973. [Google Scholar]
  • S. Lim and J. Zhu, Primal-dual correspondence and frontier projections in two-stage network DEA models. Omega 83 (2019) 236–248. [Google Scholar]
  • M. Mahdiloo, R.F. Saen and K.H. Lee, Technical, environmental and eco-efficiency measurement for supplier selection: an extension and application of data envelopment analysis. Int. J. Prod. Econ. 168 (2015) 279–289. [Google Scholar]
  • R.K. Matin, M. Azadi and R.F. Saen, Measuring the sustainability and resilience of blood supply chains. Decis. Support Syst. 161 (2022) 113629. [Google Scholar]
  • S.M. Mirhedayatian, M. Azadi and R.F. Saen, A novel network data envelopment analysis model for evaluating green supply chain management. Int. J. Prod. Econ. 147 (2014) 544–554. [Google Scholar]
  • H. Omrani and E. Soltanzadeh, Dynamic DEA models with network structure: an application for Iranian airlines. J. Air Transp. Manage. 57 (2016) 52–61. [Google Scholar]
  • K. Ostad-Ali-Askari, Management of risks substances and sustainable development. Appl. Water Sci. 12 (2022) 1–23. [Google Scholar]
  • P. Pandey, B.J. Shah and H. Gajjar, A fuzzy goal programming approach for selecting sustainable suppliers. Benchmarking: An Int. J. 24 (2017) 1138–1165. [Google Scholar]
  • C.R. Pereira, M. Christopher and A.L. Da Silva, Achieving supply chain resilience: the role of procurement. Supply Chain Manage. Int. J. 19 (2014) 626–642. [Google Scholar]
  • P. Pourhejazy, O.K. Kwon, Y.T. Chang and H.K. Park, Evaluating resiliency of supply chain network: a data envelopment analysis approach. Sustainability 9 (2017) 255. [Google Scholar]
  • S.A. Rehman Khan, Z. Yu, S. Sarwat, D.I. Godil, S. Amin and S. Shujaat, The role of block chain technology in circular economy practices to improve organizational performance. Int. J. Logistics Res. App. 25 (2022) 605–622. [Google Scholar]
  • Y.D. Sari, S. Efendi and M. Zarlis, Estimating most productive scale size in data envelopment analysis with integer value data, in IOP Conference Series: Materials Science and Engineering. Vol. 300. IOP Publishing (2018) 012014. [Google Scholar]
  • S.M. Saati, A. Memariani and G.R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Opt. Decis. Making 1 (2002) 255–267. [Google Scholar]
  • A. Sarkhosh-Sara, M. Tavassoli and A. Heshmati, Assessing the sustainability of high-, middle-, and low-income countries: a network DEA model in the presence of both zero data and undesirable outputs. Sustainable Prod. Consumption 21 (2020) 252–268. [Google Scholar]
  • E. Soltanzadeh and H. Omrani, Dynamic network data envelopment analysis model with fuzzy inputs and outputs: an application for Iranian Airlines. Appl. Soft Comput. 63 (2018) 268–288. [Google Scholar]
  • T.J. Stewart, Goal directed benchmarking for organizational efficiency. Omega 38 (2010) 534–539. [Google Scholar]
  • T. Sueyoshi, M. Goto and T. Ueno, Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energy Policy 38 (2010) 1675–1688. [Google Scholar]
  • M. Tavana, H. Shabanpour, S. Yousefi and R.F. Saen, A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Comput. App. 28 (2017) 3683–3696. [Google Scholar]
  • M. Tavassoli and R.F. Saen, Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis. Sustainable Prod. Consumption 18 (2019) 41–52. [Google Scholar]
  • M. Tavassoli and R.F. Saen, A new fuzzy network data envelopment analysis model for measuring efficiency and effectiveness: assessing the sustainability of railways. Appl. Intell. 52 (2022) 13634–13658. [Google Scholar]
  • M. Tavassoli and R.F. Saen, Sustainability measurement of combined cycle power plants: a novel fuzzy network data envelopment analysis model. Ann. Oper. Res. (2023) 1–41. DOI: 10.1007/s10479-023-05170-3. [Google Scholar]
  • M. Tavassoli, G.R. Faramarzi and R.F. Saen, Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input. J. Air Transp. Manage. 34 (2014) 146–153. [Google Scholar]
  • M. Tavassoli, S. Ketabi and M. Ghandehari, Developing a network DEA model for sustainability analysis of Iran’s electricity distribution network. Int. J. Electr. Power Energy Syst. 122 (2020) 106187. [Google Scholar]
  • M. Tavassoli, A. Fathi and R.F. Saen, Assessing the sustainable supply chains of tomato paste by fuzzy double frontier network DEA model. Ann. Oper. Res. (2021) 1–33. DOI: 10.1007/s10479-021-04139-4. [Google Scholar]
  • M. Tavassoli, S. Ketabi and M. Ghandehari, A novel fuzzy network DEA model to evaluate efficiency of Iran’s electricity distribution network with sustainability considerations. Sustainable Energy Technol. Assess. 52 (2022) 102269. [Google Scholar]
  • Y.M. Wang and Y.X. Lan, Estimating most productive scale size with double frontiers data envelopment analysis. Econ. Model. 33 (2013) 182–186. [Google Scholar]
  • C. Wang, Q. Zhang and W. Zhang, Corporate social responsibility, Green supply chain management and firm performance: the moderating role of big-data analytics capability. Res. Transp. Bus. Manage. 37 (2020) 100557. [Google Scholar]
  • Y. Wu, C. He and X. Cao, The impact of environmental variables on the efficiency of Chinese and other non-Chinese airlines. J. Air Transp. Manage. 29 (2013) 35–38. [Google Scholar]
  • K.J. Wu, M.L. Tseng, A.S. Chiu and M.K. Lim, Achieving competitive advantage through supply chain agility under uncertainty: a novel multi-criteria decision-making structure. Int. J. Prod. Econ. 190 (2017) 96–107. [Google Scholar]
  • L. Yang and X. Zhang, Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: a bootstrapping approach in global data envelopment analysis. J. Cleaner Prod. 173 (2018) 100–111. [Google Scholar]
  • M.M. Yu and E.T. Lin, Efficiency and effectiveness in railway performance using a multi-activity network DEA model. Omega 36 (2008) 1005–1017. [Google Scholar]
  • Z. Yu and S.A. Rehman Khan, Evolutionary game analysis of green agricultural product supply chain financing system: COVID-19 pandemic. Int. J. Logistics Res. App. 25 (2022) 1115–1135. [Google Scholar]
  • Z. Yu and S.A. Rehman Khan, Green supply chain network optimization under random and fuzzy environment. Int. J. Fuzzy Syst. 24 (2022) 1170–1181. [Google Scholar]
  • C. Yu, L. Shi, Y. Wang, Y. Chang and B. Cheng, The eco-efficiency of pulp and paper industry in China: an assessment based on slacks-based measure and Malmquist–Luenberger index. J. Cleaner Prod. 127 (2016) 511–521. [Google Scholar]
  • H. Zhou and H. Hu, Sustainability evaluation of railways in China using a two-stage network DEA model with undesirable outputs and shared resources. Sustainability 9 (2017) 150. [Google Scholar]
  • X. Zhou, Y. Wang, J. Chai, L. Wang, S. Wang and B. Lev, Sustainable supply chain evaluation: a dynamic double frontier network DEA model with interval type-2 fuzzy data. Inf. Sci. 504 (2019) 394–421. [Google Scholar]
  • G.A. Zsidisin and S.M. Wagner, Do perceptions become reality? The moderating role of supply chain resiliency on disruption occurrence. J. Bus. Logistics 31 (2010) 1–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.