Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1789 - 1805
DOI https://doi.org/10.1051/ro/2024065
Published online 16 April 2024
  • R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier, New York (2005). [Google Scholar]
  • S. Albrecht, M. Leibold and M. Ulbrich, A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numer. Algebra Control Optim. 2 (2012) 105–127. [Google Scholar]
  • F. Benita, S. Dempe and P. Mehlitz, Bilevel optimal control problems with pure state constraints and finite-dimensional lower level. SIAM J. Optim. 26 (2016) 564–588. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Bensoussan and J.L. Lions, Nouvelle formulation des problmes de controle impulsionnel et applications. C. R. Acad. Sci. Paris Sér. A–B 276 (1973) 1189–1192. [MathSciNet] [Google Scholar]
  • J. Bonnel and H. Morgan, Semivectorial bilevel convex optimal control problems: Existence results. SIAM J. Control Optim. 50 (2012) 3224–3241. [CrossRef] [MathSciNet] [Google Scholar]
  • F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). [Google Scholar]
  • S. Dempe, F. Harder, P. Mehlitz and G. Wachsmuth, Analysis and solution methods for bilevel optimal control problems. In: Non-Smooth and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical Optimization. Cham, Springer International Publishing (2021) 77–99. [Google Scholar]
  • J. Dutta, L. Lafhim, A.B. Zemkoho and S. Zhou, Nonconvex quasi-variational inequalities: stability analysis and application to numerical optimization. Preprint: arXiv:2210.02531 (2022). [Google Scholar]
  • F. Fisch, J. Lenz, F. Holzapfel and G. Sachs, On the solution of bilevel optimal control problems to increase the fairness in air races. J. Guid. Control Dyn. 35 (2012) 1292–1298. [CrossRef] [Google Scholar]
  • N. Garcia-Chan, L.J. Alvarez-Vázquez, A. Martínez and M.E. Vázquez-Méndez, Bilevel optimal control of urban traffic-related air pollution by means of Stackelberg strategies. Optim. Eng. 23 (2022) 1165–1188. [CrossRef] [MathSciNet] [Google Scholar]
  • V.V. Kalashnikov, F. Benita and P. Mehlitz, The natural gas cash-out problem: a bilevel optimal control approach. Math. Probl. Eng. (2015). [Google Scholar]
  • S.O. Lopes, F.A.C.C. Fontes and M.R. De Pinho, An integral-type constraint qualification to guarantee nondegeneracy of the maximum principle for optimal control problems with state constraints. Syst. Control Lett. 62 (2013) 686–692. [CrossRef] [Google Scholar]
  • P. Mehlitz and G. Wachsmuth, Weak and strong stationarity in generalized bilevel programming and bilevel optimal control. Optimization 65 (2016) 907–935. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Mehlitz and G. Wachsmuth, Bilevel optimal control: existence results and stationarity conditions. In: Bilevel Optimization: Advances and Next Challenges, edited by S. Dempe and A. Zemkoho. Springer (2020) 451–484. [CrossRef] [Google Scholar]
  • B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren Math. Wiss. 330, Springer, Berlin (2006). [Google Scholar]
  • B.S. Mordukhovich and J.V. Outrata, Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18 (2007) 389–412. [CrossRef] [MathSciNet] [Google Scholar]
  • B.S. Mordukhovich, N.M. Nam and N.D. Yen, Subgradients of marginal functions in parametric mathematical programming. Math. Program. 116 (2009) 369–396. [CrossRef] [MathSciNet] [Google Scholar]
  • B.S. Mordukhovich, M.N. Nam and H.M. Phan, Variational analysis of marginal functions with applications to bilevel programming. J. Optim. Theory Appl. 152 (2012) 557–586. [CrossRef] [MathSciNet] [Google Scholar]
  • R.B. Vinter, Optimal Control. Springer, Berlin (2010). [Google Scholar]
  • J.J. Ye, Optimality conditions for bilevel programming problems. Optimization 33 (1995) 9–27. [CrossRef] [MathSciNet] [Google Scholar]
  • J.J. Ye, Optimal strategies for bilevel dynamic problems. SIAM J. Control Optim. 35 (1997) 512–531. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.