Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1979 - 1999
DOI https://doi.org/10.1051/ro/2024069
Published online 24 April 2024
  • G.B. Dantzig and J.H. Ramser, The truck dispatching problem. Manage. Sci. 6 (1959) 80–91. [Google Scholar]
  • B.Y. Ekren, S.K. Mangla, E.E. Turhanlar, Y. Kazancoglu and G. Li, Lateral inventory share-based models for IoT-enabled E-commerce sustainable food supply networks. Comput. Oper. Res. 130 (2021) 105237. [CrossRef] [Google Scholar]
  • Z. Liu, Y. Zhang, M. Yu and X. Zhou, Heuristic algorithm for ready-mixed concrete plant scheduling with multiple mixers. Autom. Constr. 84 (2017) 1–13. [CrossRef] [Google Scholar]
  • K.M. Ferreira, T.A. de Queiroz and F.M.B. Toledo, An exact approach for the green vehicle routing problem with two-dimensional loading constraints and split delivery. Comput. Oper. Res. 136 (2021) 105452. [CrossRef] [Google Scholar]
  • J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of vehicle routing and scheduling problems. Networks 11 (1981) 221–227. [CrossRef] [Google Scholar]
  • B. Kallehauge, N. Boland and O.B.G. Madsen, Path inequalities for the vehicle routing problem with time windows. Networks 49 (2007) 273–293. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Tao and C.-M. Tam, System reliability theory based multiple objective optimization model for construction projects. Autom. Constr. 31 (2013) 54–64. [CrossRef] [Google Scholar]
  • N.N. Yan and D. Zheng, A study on the agent-based vehicles dispatching optimization at container terminals. Appl. Mech. Mater. 241–244 (2012) 1745–1750. [CrossRef] [Google Scholar]
  • D.-Y. Lin and Y.-H. Ku, Using genetic algorithms to optimize stopping patterns for passenger rail transportation. Comput.-Aided Civil Infrastruct. Eng. 29 (2013) 264–278. [Google Scholar]
  • Q. Wang and C. Tang, Deep reinforcement learning for transportation network combinatorial optimization: a survey. Knowl.-Based Syst. 233 (2021) 107526. [CrossRef] [Google Scholar]
  • R. Basso, B. Kulcsár and I. Sanchez-Diaz, Electric vehicle routing problem with machine learning for energy prediction. Transp. Res. Part B: Methodol. 145 (2021) 24–55. [CrossRef] [Google Scholar]
  • K.-C. Ying and S.-W. Lin, Minimizing total completion time in the no-wait jobshop scheduling problem using a backtracking metaheuristic. Comput. Ind. Eng. 169 (2022) 108238. [CrossRef] [Google Scholar]
  • W. Ongcunaruk, P. Ongkunaruk and G.K. Janssens, Genetic algorithm for a delivery problem with mixed time windows. Comput. Ind. Eng. 159 (2021) 107478. [CrossRef] [Google Scholar]
  • L. Pasandi, M. Hooshmand and M. Rahbar, Modified A* Algorithm integrated with ant colony optimization for multi-objective route-finding; case study: Yazd. Appl. Soft Comput. 113 (2021) 107877. [CrossRef] [Google Scholar]
  • A.M. Altabeeb, A.M. Mohsen, L. Abualigah and A. Ghallab, Solving capacitated vehicle routing problem using cooperative firefly algorithm. Appl. Soft Comput. 108 (2021) 107403. [CrossRef] [Google Scholar]
  • Z.H. Ahmed and M. Yousefikhoshbakht, An improved tabu search algorithm for solving heterogeneous fixed fleet open vehicle routing problem with time windows. Alexandria Eng. J. 64 (2023) 349–363. [CrossRef] [Google Scholar]
  • Y. Meliani, Y. Hani, S.L. Elhaq and A. El Mhamedi, A tabu search based approach for the heterogeneous fleet vehicle routing problem with three-dimensional loading constraints. Appl. Soft Comput. 126 (2022) 109239. [CrossRef] [Google Scholar]
  • İ. İlhan, An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol. Comput. 64 (2021) 100911. [CrossRef] [Google Scholar]
  • M.M. Solomon, Algorithm for the vehicle routing and scheduling problems with time windows constraints. Oper. Res. 35 (1987) 254–265. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. Masmoudi, S. Mancini, R. Baldacci and Y.-H. Kuo, Vehicle routing problems with drones equipped with multi-package payload compartments. Transp. Res. Part E: Logistics Transp. Rev. 164 (2022) 102757. [CrossRef] [Google Scholar]
  • Y. Niu, D. Kong, R. Wen, Z. Cao and J. Xiao, An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand. Knowl.-Based Syst. 230 (2021) 107378. [CrossRef] [Google Scholar]
  • A. Gutiérrez-Sánchez and L.B. Rocha-Medina, VRP variants applicable to collecting donations and similar problems: a taxonomic review. Comput. Ind. Eng. 164 (2022) 107887. [CrossRef] [Google Scholar]
  • K.-W. Pang, An adaptive parallel route construction heuristic for the vehicle routing problem with time windows constraints. Expert Syst. App. 38 (2011) 11939–11946. [CrossRef] [Google Scholar]
  • C. Chen, E. Demir and Y. Huang, An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. Eur. J. Oper. Res. 294 (2021) 1164–1180. [CrossRef] [Google Scholar]
  • A. Escudero-Santana, J. Muñuzuri, P. Cortés and L. Onieva, The one container drayage problem with soft time windows. Res. Transp. Econ. 90 (2021) 100884. [CrossRef] [Google Scholar]
  • F. Errico, G. Desaulniers, M. Gendreau, W. Rei and L.-M. Rousseau, The vehicle routing problem with hard time windows and stochastic service times. Eur. J. Transp. Logistics 7 (2018) 223–251. [CrossRef] [Google Scholar]
  • M. Gmira, M. Gendreau, A. Lodi and J.-Y. Potvin, Tabu search for the time-dependent vehicle routing problem with time windows on a road network. Eur. J. Oper. Res. 288 (2021) 129–140. [CrossRef] [Google Scholar]
  • J.-F. Cordeau, G. Laporte and A. Mercier, A unified tabu search heuristic for vehicle routing problem with time window constraints. J. Oper. Res. Soc. 52 (2001) 928–936. [CrossRef] [Google Scholar]
  • V.F. Yu, P. Jewpanya, A.A.N. Perwira Redi and Y.-C. Tsao, Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput. Oper. Res. 129 (2021) 105205. [CrossRef] [Google Scholar]
  • Y. Meliani, Y. Hani, S.L. Elhaq and A. El Mhamedi, A developed tabu search algorithm for heterogeneous fleet vehicle routing problem. IFAC-PapersOnLine 52 (2019) 1051–1056. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.