Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1315 - 1331
DOI https://doi.org/10.1051/ro/2024036
Published online 05 April 2024
  • R.D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. [CrossRef] [Google Scholar]
  • J.E. Beasley, Determining teaching and research efficiencies. J. Oper. Res. Soc. 46 (1995) 441–452. [CrossRef] [Google Scholar]
  • L. Castelli, R. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units. Eur. J. Oper. Res. 154 (2004) 465–476. [CrossRef] [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logist. Q. 9 (1962) 181–186. [CrossRef] [Google Scholar]
  • C. Chen, J. Zhu, J.Y. Yu and H. Noori, A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis. Eur. J. Oper. Res. 221 (2012) 348–359. [CrossRef] [Google Scholar]
  • H.H. Chen, Stock selection using data envelopment analysis. Ind. Manag. Data Syst. 108 (2008) 1255–1268. [CrossRef] [Google Scholar]
  • H. Chowdhury and V. Zelenyuk, Performance of hospital services in Ontario: DEA with truncated regression approach. Omega 63 (2016) 111–122. [CrossRef] [Google Scholar]
  • M. Covel, Trend Following: How Great Traders Make Millions in Up or Down Markets. FT Press (2004). [Google Scholar]
  • Z. Dai, H. Zhu and J. Kang, New technical indicators and stock returns predictability. Int. Rev. Econ. Finance 71 (2021) 127–142. [CrossRef] [Google Scholar]
  • M.A. Dia, Portfolio selection methodology based on data envelopment analysis. Inf. Syst. Oper. Res. 47 (2009) 71–79. [Google Scholar]
  • T. Ding, H. Wu, Q. Dai, Z. Zhou and C. Tan, Environmental efficiency analysis of urban agglomerations in China: A non-parametric meta-frontier approach. Emerg. Mark. Finance Trade. 56 (2020) 2977–2992. [CrossRef] [Google Scholar]
  • J. Du, J. Wang, Y. Chen, S.Y. Chou and J. Zhu, Incorporating health outcomes in Pennsylvania hospital efficiency: an additive super-efficiency DEA approach. Ann. Oper. Res. 221 (2014) 161–172. [CrossRef] [Google Scholar]
  • J. Du, J. Zhu, W.D. Cook and J. Huo, DEA models for parallel systems: Game-theoretic approaches. Asia-Pac. J. Oper. Res. 32 (2015) 1550008. [CrossRef] [MathSciNet] [Google Scholar]
  • N.C.P. Edirisinghe and X. Zhang, Generalized DEA model of fundamental analysis and its application to portfolio optimization. J. Bank. Finance 31 (2007) 3311–3335. [CrossRef] [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
  • C. Feng, R. Zhou, J. Ding, X. Xiao and M. Pu, A method for allocation of carbon emission quotas to provincial-level industries in China based on DEA. Sustainability 15 (2023) 2632. [CrossRef] [Google Scholar]
  • M. Gardijan and T. Krinjari, Equity portfolio optimization: A DEA based methodology applied to the Zagreb Stock Exchange. Croat. Oper. Res. Rev. 6 (2015) 405–417. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Gong, J. Zhu, Y. Chen and W.D. Cook, DEA as a tool for auditing: Application to Chinese manufacturing industry with parallel network structures. Ann. Oper. Res. 263 (2018) 247–269. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Guo, J. Zhang and L. Zhang, Two-stage additive network DEA: Duality, frontier projection and divisional efficiency. Expert Syst. Appl. 157 (2020) 1–11. [MathSciNet] [Google Scholar]
  • H.H. Hu, Q. Qi and C.H. Yang, Evaluation of China’s regional hospital efficiency: DEA approach with undesirable output. J. Oper. Res. Soc. 63 (2012) 715–725. [CrossRef] [Google Scholar]
  • B. Hurst, Y.H. Ooi and L.H. Pedersen, A century of evidence on trend-following investing. J. Portf. Manag. 44 (2017) 15–29. [CrossRef] [Google Scholar]
  • S.N. Hwang, W.C. Chuang and Y.C. Chen, Formulate stock trading strategies using DEA: a Taiwanese case. Inf. Syst. Oper. Res. 48 (2010) 75–81. [Google Scholar]
  • C. Kao, Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 196 (2009) 1107–1112. [CrossRef] [Google Scholar]
  • C. Kao, Efficiency decomposition for parallel production systems. J. Oper. Res. Soc. 63 (2012) 64–71. [CrossRef] [Google Scholar]
  • K.C. Kuo, W.M. Lu and T.N. Dinh, An integrated efficiency evaluation of China stock market. J. Oper. Res. Soc. 72 (2021) 950–969. [CrossRef] [Google Scholar]
  • H. Li, C. Chen, W.D. Cook, J. Zhang and J. Zhu, Two-stage network DEA: Who is the leader?. Omega 74 (2018) 15–19. [Google Scholar]
  • J. Li, H. Gao, Y. Li, X. Jin and L.I.A.N.G. Liang, Stock efficiency evaluation based on multiple risk measures: A DEA-like envelopment approach. J. Syst. Sci. Complex. 35 (2022) 1480–1499. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Li, R. Zhao and F. Huang, Environmental performance of China’s industrial system considering technological heterogeneity and interaction. Sustainability 15 (2023) 3425. [CrossRef] [Google Scholar]
  • L. Liang, W.D. Cook and J. Zhu, DEA models for twostage processes: Game approach and efficiency decomposition. Nav. Res. Logist. 55 (2008) 643–653. [CrossRef] [Google Scholar]
  • S. Lim, K.W. Oh and J. Zhu, Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. Eur. J. Oper. Res. 236 (2014) 361–368. [CrossRef] [Google Scholar]
  • J. Ma, L. Qi and L. Deng, Additive centralized and Stackelberg DEA models for two-stage system with shared resources. Int. Trans. Oper. Res. 27 (2020) 2211–2229. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Mills, S. Anyomi, M.A. Baafi and P.S. Borah, A dynamic SBMDEA and portfolio formation test approach to the operating efficiencystock returns nexus. Manag. Decis. Econ. 43 (2022) 3095–3106. [CrossRef] [Google Scholar]
  • C.J. Neely, D.E. Rapach, J. Tu and G. Zhou, Forecasting the equity risk premium: the role of technical indicators. Manag. Sci. 60 (2014) 1772–1791. [CrossRef] [Google Scholar]
  • H. Okuda and D. Aiba, Determinants of operational efficiency and total factor productivity change of major Cambodian financial institutions: A data envelopment analysis during 2006–13. Emerg. Mark. Finance Trade 52 (2016) 1455–1471. [CrossRef] [Google Scholar]
  • E. P¨at¨ari, T. Leivo and S. Honkapuro, Enhancement of equity portfolio performance using data envelopment analysis. Eur. J. Oper. Res. 220 (2012) 786–797. [CrossRef] [Google Scholar]
  • A. Picasso, S. Merello, Y. Ma, L. Oneto and E. Cambria, Technical analysis and sentiment embeddings for market trend prediction. Expert Syst. Appl. 135 (2019) 60–70. [CrossRef] [Google Scholar]
  • Q. Qin, Q.G. Wang, S.G. Ge and G. Ramakrishnan, Chinese stock price and volatility predictions with multiple technical indicators. J. Intell. Learn. Syst. Appl. 3 (2011) 209–219. [Google Scholar]
  • D. Shah, H. Isah and F. Zulkernine, Stock market analysis: A review and taxonomy of prediction techniques. Int. J. Financ. Stud. 7 (2019) 26. [CrossRef] [Google Scholar]
  • X. Shi, Environmental efficiency evaluation of Chinese industry systems by using non-cooperative two-stage DEA model. Math. Probl. Eng. 2019 (2019) 1–10. [Google Scholar]
  • S.A. Siddiqui, How efficient is Indian health insurance sector: An SBMDEA study. Manag. Decis. Econ. 43 (2022) 950–962. [CrossRef] [Google Scholar]
  • A. Silva, R. Neves and N. Horta, A hybrid approach to portfolio composition based on fundamental and technical indicators. Expert Syst. Appl. 42 (2015) 2036–2048. [CrossRef] [Google Scholar]
  • M. Tavana and K. Khalili-Damghani, A new two-stage Stackelberg fuzzy data envelopment analysis model. Measurement 53 (2014) 277–296. [CrossRef] [Google Scholar]
  • M. Wang, L. Li, Q. Dai and F. Shi, Resource allocation based on DEA and non-cooperative game. J. Syst. Sci. Complex 34 (2021) 2231–2249. [CrossRef] [Google Scholar]
  • P. Wanke, M.A.K. Azad and C.P. Barros, Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Res. Int. Bus. Finance 36 (2016) 485–498. [CrossRef] [Google Scholar]
  • P. Wanke, A. Maredza and R. Gupta, Merger and acquisitions in South African banking: A network DEA model. Res. Int. Bus. Finance 41 (2017) 362–376. [CrossRef] [Google Scholar]
  • D.D. Wu, Z. Yang and L. Liang, Using DEA-neural network approach to evaluate branch efficiency of a large Canadian bank. Expert Syst. Appl. 31 (2006) 108–115. [CrossRef] [Google Scholar]
  • H. Wu, K. Lv, L. Liang and H. Hu, Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry. Omega 66 (2017) 38–47. [CrossRef] [Google Scholar]
  • T.F. Zaare and S. Daneshvar, Benchmark approach for efficiency improvement in green supply chain management with DEA models. Sustainability 15 (2023) 4433. [CrossRef] [Google Scholar]
  • Y. Zha and L. Liang, Two-stage cooperation model with input freely distributed among the stages. Eur. J. Oper. Res. 205 (2010) 332–338. [CrossRef] [Google Scholar]
  • Z. Zhou, M. Gao, H. Xiao, R. Wang and W. Liu, Big data and portfolio optimization: a novel approach integrating DEA with multiple data sources. Omega 104 (2021) 102479. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.