Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1281 - 1313
DOI https://doi.org/10.1051/ro/2024008
Published online 29 March 2024
  • A.N.H. Zaied, M.M. Ismail and S.S. Mohamed, Permutation flow shop scheduling problem with makespan criterion: literature review. J. Theor. Appl. Inf. Technol. 99 (2021) 830–848. [Google Scholar]
  • H. Öztop, M.F. Tasgetiren, D.T. Eliiyi, Q.-K. Pan and L. Kandiller, An energy-efficient permutation flowshop scheduling problem. Expert Syst. App. 150 (2020) 113279. [CrossRef] [Google Scholar]
  • Y. Li, X. Li, L. Gao, L. Fu and C. Wang, Application efficient critical path based method for permutation flow shop scheduling problem. J. Manuf. Syst. 63 (2022) 344–353. [CrossRef] [Google Scholar]
  • W. Liao and Y. Fu, Min–max regret criterion-based robust model for the permutation flow-shop scheduling problem. Eng. Optim. 52 (2020) 687–700. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Shao, D. Pi and Z. Shao, Application search methods for a distributed assembly no-idle flow shop scheduling problem. IEEE Syst. J. 13 (2018) 1945–1956. [Google Scholar]
  • A. Goli and T. Keshavarz, Just-in-time scheduling in identical parallel machine sequence-dependent group scheduling problem. J. Ind. Manage. Optim. 18 (2022) 3807. [CrossRef] [Google Scholar]
  • D. Yüksel, M.F. Ta¸sgetiren, L. Kandiller and L. Gao, An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption. Comput. Ind. Eng. 145 (2020) 106431. [CrossRef] [Google Scholar]
  • M.A. Baihaqi and D.M. Utama, No-wait flowshop permutation scheduling problem: fire hawk optimizer vs beluga whale optimization algorithm. Jurnal Ilmiah Teknik Industri 22 (2023) 124–136. [CrossRef] [Google Scholar]
  • T. Aldowaisan and A. Allahverdi, New heuristics for m-machine no-wait flowshop to minimize total completion time. Omega 32 (2004) 345–352. [CrossRef] [Google Scholar]
  • H. Röck, The three-machine no-wait flow shop is NP-complete. J. ACM 31 (1984) 336–345. [CrossRef] [Google Scholar]
  • D.A. Rossit, F. Tohmé and M. Frutos, The non-permutation flow-shop scheduling problem: a literature review. Omega 77 (2018) 143–153. [CrossRef] [Google Scholar]
  • M.M. Yenisey and B. Yagmahan, Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends. Omega 45 (2014) 119–135. [CrossRef] [Google Scholar]
  • G.M. Komaki, S. Sheikh and B. Malakooti, Flow shop scheduling problems with assembly operations: a review and new trends. Int. J. Prod. Res. 57 (2019) 2926–2955. [CrossRef] [Google Scholar]
  • E. González-Neira, J. Montoya-Torres and D. Barrera, Flow-shop scheduling problem under uncertainties: review and trends. Int. J. Ind. Eng. Comput. 8 (2017) 399–426. [Google Scholar]
  • H.H. Miyata and M.S. Nagano, The blocking flow shop scheduling problem: a comprehensive and conceptual review. Expert Syst. App. 137 (2019) 130–156. [CrossRef] [Google Scholar]
  • Ö. Tosun, M.K. Marichelvam and N. Tosun, A literature review on hybrid flow shop scheduling. Int. J. Adv. Oper. Manage. (2020) 156–194. [Google Scholar]
  • J.S. Neufeld, S. Schulz and U. Buscher, A systematic review of multi-objective hybrid flow shop scheduling. Eur. J. Oper. Res. 309 (2023) 1–23. [CrossRef] [Google Scholar]
  • D.M. Utama, M.D. Primayesti, S.Z. Umamy, B.M.N. Kholifa and A.D. Yasa, A systematic literature review on energy-efficient hybrid flow shop scheduling. Cogent Eng. 10 (2023) 2206074. [CrossRef] [Google Scholar]
  • B. Kitchenham and P. Brereton, A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 55 (2013) 2049–2075. [CrossRef] [Google Scholar]
  • R. Ojstersek, M. Brezocnik and B. Buchmeister, Multi-objective optimization of production scheduling with evolutionary computation: a review. Int. J. Ind. Eng. Comput. 11 (2020) 359–376. [Google Scholar]
  • D.S. Widodo, Improve algoritma hodgson untuk meminimasi jumlah job terlambat pada penjadwalan flow shop. Jurnal Teknik Industri 19 (2018) 73–81. [CrossRef] [Google Scholar]
  • A. Goli, A.-M. Golmohammadi and J.-L. Verdegay, Two-echelon electric vehicle routing problem with a developed moth-flame meta-heuristic algorithm. Oper. Manage. Res. 15 (2022) 891–912. [CrossRef] [Google Scholar]
  • A. Goli, A. Ala and M. Hajiaghaei-Keshteli, Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem. Expert Syst. App. 213 (2023) 119077. [CrossRef] [Google Scholar]
  • D.M. Utama, D.S. Widodo, M.F. Ibrahim, K. Hidayat, T. Baroto and A. Yurifah, The hybrid whale optimization algorithm: a new metaheuristic algorithm for energy-efficient on flow shop with dependent sequence setup, in International Conference on Science and Technology 2019 Surabaya, Indonesia. IOP Publishing. Vol. 1569 (2020) 022094. [Google Scholar]
  • D.M. Utama, D.S. Widodo, M.F. Ibrahim and S.K. Dewi, An effective hybrid ant lion algorithm to minimize mean tardiness on permutation flow shop scheduling problem. Int. J. Adv. Intell. Inf. 6 (2020) 23–35. [Google Scholar]
  • D.S. Widodo and D.M. Utama, The hybrid ant lion optimization flow shop scheduling problem for minimizing completion time, in International Conference on Science and Technology 2019 Surabaya, Indonesia. IOP Publishing. Vol. 1569 (2020) 022097. [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G.R. Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, in Annals of Discrete Mathematics, edited by P.L. Hammer, E.L. Johnson and B.H. Korte. Vol. 5. Elsevier (1979) 287–326. [Google Scholar]
  • D.M. Utama, A.A.P. Salima and D.S. Widodo, A novel hybrid archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling. Int. J. Adv. Intell. Inf. 8 (2022) 237–250. [Google Scholar]
  • D.M. Utama, M.F. Ibrahim, D.S. Wijaya, D.S. Widodo and M.D. Primayesti, A novel hybrid multi-verse optimizer algorithm for energy-efficient permutation flow shop scheduling problem. J. Phys. Conf. Ser. 2394 (2022) 012006. [CrossRef] [Google Scholar]
  • D.M. Utama, A modified beluga whale optimization for optimizing energy-efficient no-idle permutation flow shop scheduling problem. Proc. Comput. Sci. 227 2023 55–63. [CrossRef] [Google Scholar]
  • D.M. Utama, Minimizing number of tardy jobs in flow shop scheduling using a hybrid whale optimization algorithm, in The International Conference on Industrial Automation, Smart Grid and its Application (ICIASGA) 2020, Madiun, Jawa Timur, Indonesia. Vol. 1845. IOP Publishing (2021) 012017. [Google Scholar]
  • I. Amallynda, Application discrete particle swarm optimization algorithms for permutation flowshop scheduling problem. Jurnal Teknik Industri 20 (2019) 105–116. [CrossRef] [Google Scholar]
  • D.R. Wati and I. Amallynda, A no-idle flow shop scheduling using fire hawk optimizer to minimize energy consumption. Jurnal Teknik Industri 24 (2023) 65–80. [CrossRef] [Google Scholar]
  • Y.M. Risma and D.M. Utama, AVOA and ALO Algorithm for energy-efficient no-idle permutation flow shop scheduling problem: a comparison study. Jurnal Optimasi Sistem Industri 22 (2023) 126–141. [CrossRef] [Google Scholar]
  • A.N.A.A.K. Jabari and A. Hasan, Energy-aware scheduling in hybrid flow shop using firefly algorithm. Jurnal Teknik Industri 22 (2021) 18–30. [CrossRef] [Google Scholar]
  • Z. Liu, J. Xie, J. Li and J. Dong, Application heuristic for two-stage no-wait hybrid flowshop scheduling with a single machine in either stage. Tsinghua Sci. Technol. 8 (2003) 43–48. [Google Scholar]
  • Y. Wang, X. Li, R. Ruiz and S. Sui, Application iterated greedy heuristic for mixed no-wait flowshop problems. IEEE Trans. Cybern. 48 (2017) 1553–1566. [Google Scholar]
  • A. Mozdgir, S. Fatemi Ghomi, F. Jolai and J. Navaei, Three meta-heuristics to solve the no-wait two-stage assembly flow shop scheduling problem. Sci. Iran. 20 (2013) 2275–2283. [Google Scholar]
  • M. Komaki and B. Malakooti, General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem. Prod. Eng. 11 (2017) 315–329. [CrossRef] [Google Scholar]
  • H. Li, X. Li and L. Gao, Application discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem. Appl. Soft Comput. 100 (2021) 106946. [CrossRef] [Google Scholar]
  • F. Zhao, Z. Xu, L. Wang, N. Zhu, T. Xu and J. Jonrinaldi, Application population-based iterated greedy algorithm for distributed assembly no-wait flow-shop scheduling problem. IEEE Trans. Ind. Inf. 19 (2023) 6692–6705. [CrossRef] [Google Scholar]
  • C.A. Glass, J.N. Gupta and C.N. Potts, Two-machine no-wait flow shop scheduling with missing operations. Math. Oper. Res. 24 (1999) 911–924. [CrossRef] [MathSciNet] [Google Scholar]
  • M.-L. Espinouse, P. Formanowicz and B. Penz, Minimizing the makespan in the two-machine no-wait flow-shop with limited machine availability. Comput. Ind. Eng. 37 (1999) 497–500. [CrossRef] [Google Scholar]
  • D. Li, K. Chen and X. Wang, Application of two-machine no-wait flow-shop scheduling with a non-resumable unavailable interval. J. Ind. Prod. Eng. 34 (2017) 232–238. [Google Scholar]
  • K. Chen, D. Li and X. Wang, Application minimization in two-machine flow-shop scheduling under no-wait and deterministic unavailable interval constraints. J. Syst. Sci. Syst. Eng. 29 (2020) 400–411. [CrossRef] [Google Scholar]
  • M.-L. Espinouse, P. Formanowicz and B. Penz, Complexity results and approximation algorithms for the two machine no-wait flow-shop with limited machine availability. J. Oper. Res. Soc. 52 (2001) 116–121. [CrossRef] [Google Scholar]
  • M.A. Kubzin and V.A. Strusevich, Two-machine flow shop no-wait scheduling with a nonavailability interval. Nav. Res. Logistics 51 (2004) 613–631. [CrossRef] [Google Scholar]
  • R. Shafaei, M. Rabiee and M. Mirzaeyan, Application adaptive neuro fuzzy inference system for makespan estimation in multiprocessor no-wait two stage flow shop. Int. J. Comput. Integr. Manuf. 24 (2011) 888–899. [CrossRef] [Google Scholar]
  • M. Sviridenko, Application minimization in no-wait flow shops: a polynomial time approximation scheme. SIAM J. Discrete Math. 16 (2003) 313–322. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Li and C. Wu, Heuristic for no-wait flow shops with makespan minimization based on total idle-time increments. Sci. Chin. Ser. F: Inf. Sci. 51 (2008) 896. [CrossRef] [Google Scholar]
  • Q.-K. Pan, L. Wang and B.-H. Zhao, An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion. Int. J. Adv. Manuf. Technol. 38 (2008) 778–786. [CrossRef] [Google Scholar]
  • D. Laha and U.K. Chakraborty, A constructive heuristic for minimizing makespan in no-wait flow shop scheduling. Int. J. Adv. Manuf. Technol. 41 (2009) 97–109. [CrossRef] [Google Scholar]
  • H. Yuan, Y. Jing, J. Huang and T. Ren, Application research and numerical simulation for scheduling no-wait flow shop in steel production. J. Appl. Math. 2013 (2013). DOI: 10.1155/2013/498282. [Google Scholar]
  • K. Nailwal, D. Gupta and K. Jeet, Application for no-wait flow shop scheduling problem. Int. J. Ind. Eng. Comput. 7 (2016) 671–680. [Google Scholar]
  • F. Zhao, X. He, Y. Zhang, W. Lei, W. Ma, C. Zhang and H. Song, Application jigsaw puzzle inspired algorithm for solving large-scale no-wait flow shop scheduling problems. Appl. Intell. 50 (2020) 87–100. [CrossRef] [Google Scholar]
  • F.S.D. Almeida and M.S. Nagano, Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times. J. Oper. Res. Soc. 74 (2023) 362–373. [CrossRef] [Google Scholar]
  • E. Bertolissi, Application algorithm for scheduling in the no-wait flow-shop. J. Mater. Process. Technol. 107 (2000) 459–465. [CrossRef] [Google Scholar]
  • D. Laha, J.N. Gupta and S.U. Sapkal, Application penalty-shift-insertion-based algorithm to minimize total flow time in no-wait flow shops. J. Oper. Res. Soc. 65 (2014) 1611–1624. [CrossRef] [Google Scholar]
  • X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, Application iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects. Inf. Sci. 453 (2018) 408–425. [CrossRef] [Google Scholar]
  • G. Liu, S. Song and C. Wu, Application heuristics for no-wait flowshops with total tardiness criterion. Comput. Oper. Res. 40 (2013) 521–525. [CrossRef] [MathSciNet] [Google Scholar]
  • L.-H. Su and Y.-Y. Lee, The two-machine flowshop no-wait scheduling problem with a single server to minimize the total completion time. Comput. Oper. Res. 35 (2008) 2952–2963. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Ben Chihaoui, I. Kacem, A.B. Hadj-Alouane, N. Dridi and N. Rezg, No-wait scheduling of a two-machine flow-shop to minimise the makespan under non-availability constraints and different release dates. Int. J. Prod. Res. 49 (2011) 6273–6286. [CrossRef] [Google Scholar]
  • M. Labidi, A. Kooli, T. Ladhari, A. Gharbi and U.S. Suryahatmaja, Application computational study of the two-machine no-wait flow shop scheduling problem subject to unequal release dates and non-availability constraints. IEEE Access 6 (2018) 16294–16304. [CrossRef] [Google Scholar]
  • M. Allahverdi, Application improved algorithm to minimize the total completion time in a two-machine no-wait flow-shop with uncertain setup times. J. Project Manage. 7 (2022) 1–12. [CrossRef] [Google Scholar]
  • H. Samarghandi and M. Behroozi, On the exact solution of the no-wait flow shop problem with due date constraints. Comput. Oper. Res. 81 (2017) 141–159. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Koulamas and G.J. Kyparisis, Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection. Eur. J. Oper. Res. 305 (2023) 608–616. [CrossRef] [Google Scholar]
  • A. Azerine, M. Boudhar and D. Rebaine, Application two-machine no-wait flow shop problem with two competing agents. J. Comb. Optim. 43 (2022) 168–199. [CrossRef] [MathSciNet] [Google Scholar]
  • T.-Y. Wang, Y.-H. Yang and H.-J. Lin, Comparison of scheduling efficiency in two/three-machine no-wait flow shop problem using simulated annealing and genetic algorithm. Asia-Pac. J. Oper. Res. 23 (2006) 41–59. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Muthuswamy, M.C. Vélez-Gallego, J. Maya and M. Rojas-Santiago, Minimizing makespan in a two-machine no-wait flow shop with batch processing machines. Int. J. Adv. Manuf. Technol. 63 (2012) 281–290. [CrossRef] [Google Scholar]
  • K.-W. Pang, A genetic algorithm based heuristic for two machine no-wait flowshop scheduling problems with class setup times that minimizes maximum lateness. Int. J. Prod. Econ. 141 (2013) 127–136. [CrossRef] [Google Scholar]
  • J. Grabowski and J. Pempera, Some local search algorithms for no-wait flow-shop problem with makespan criterion. Comput. Oper. Res. 32 (2005) 2197–2212. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Zhao, F. Xue, G. Yang, W. Ma, C. Zhang and H. Song, Application fitness landscape analysis for the no-wait flow shop scheduling problem with factorial representation. IEEE Access 7 (2019) 21032–21047. [CrossRef] [Google Scholar]
  • I.A. Chaudhry and A.M. Khan, Minimizing makespan for a no-wait flowshop using genetic algorithm. Sadhana 37 (2012) 695–707. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Deng, M. Wei, Q. Su and M. Zhao, Application effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem. Adv. Mech. Eng. 7 (2015) 1687814015622900. [CrossRef] [Google Scholar]
  • H. Samarghandi, Application particle swarm optimisation for the no-wait flow shop problem with due date constraints. Int. J. Prod. Res. 53 (2015) 2853–2870. [CrossRef] [Google Scholar]
  • L.A. Bewoor, V.C. Prakash and S.U. Sapkal, Comparative analysis of metaheuristic approaches for make span minimization for no wait flow shop scheduling problem. Int. J. Electr. Comput. Eng. 7 (2017) 417. [Google Scholar]
  • L.A. Bewoor, V. Chandraprakash and S. Sapkal, Evolutionary hybrid particle swarm optimization algorithm to minimize makespan to schedule a flow shop with no wait. J. Eng. Sci. Technol. 14 (2019) 609–628. [Google Scholar]
  • W. Shao, D. Pi and Z. Shao, Application extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling problem. Appl. Soft Comput. 61 (2017) 193–210. [CrossRef] [Google Scholar]
  • F. Zhao, L. Zhang, H. Liu, Y. Zhang, W. Ma, C. Zhang and H. Song, Application improved water wave optimization algorithm with the single wave mechanism for the no-wait flow-shop scheduling problem. Eng. Optim. 51 (2019) 1727–1742. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Zhu, X. Qi, F. Chen, X. He, L. Chen and Z. Zhang, Quantum-inspired cuckoo co-search algorithm for no-wait flow shop scheduling. Appl. Intell. 49 (2019) 791–803. [CrossRef] [Google Scholar]
  • S. Zhang, X. Gu and F. Zhou, Application improved discrete migrating birds optimization algorithm for the no-wait flow shop scheduling problem. IEEE Access 8 (2020) 99380–99392. [CrossRef] [Google Scholar]
  • H. Zhu, N. Luo and X. Li, Application quantum-inspired cuckoo co-evolutionary algorithm for no-wait flow shop scheduling. IET Collab. Intell. Manuf. 3 (2021) 105–118. [CrossRef] [Google Scholar]
  • W. Shao, D. Pi and Z. Shao, Application hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism for no-wait flow shop scheduling. Knowl.-Based Syst. 107 (2016) 219–234. [CrossRef] [Google Scholar]
  • S. Zhang and X. Gu, A discrete whale optimization algorithm for the no-wait flow shop scheduling problem. Meas. Control 56 (2023) 1764–1779. [CrossRef] [Google Scholar]
  • J. Li, X. Guo and Q. Zhang, Multi-strategy discrete teaching–learning-based optimization algorithm to solve no-wait flow-shop-scheduling problem. Symmetry 15 (2023) 1430. [CrossRef] [Google Scholar]
  • J. Yu, H. Zhang and Y. Dong, Application on No-wait flow shop scheduling based on discrete state transition algorithm. J. Syst. Simul. 35 (2023) 1034–1045. [Google Scholar]
  • M.S. Nagano, A.A. Da Silva and L.A.N. Lorena, An evolutionary clustering search for the no-wait flow shop problem with sequence dependent setup times. Expert Syst. App. 41 (2014) 3628–3633. [CrossRef] [Google Scholar]
  • H. Samarghandi and T.Y. ElMekkawy, Solving the no-wait flow-shop problem with sequence-dependent set-up times. Int. J. Comput. Integr. Manuf. 27 (2014) 213–228. [CrossRef] [Google Scholar]
  • H. Samarghandi, Application the effect of server side-constraints on the makespan of the no-wait flow-shop problem with sequence-dependent set-up times. Int. J. Prod. Res. 53 (2015) 2652–2673. [CrossRef] [Google Scholar]
  • H. Sun, A. Jiang, D. Ge, X. Zheng and F. Gao, Application chance constrained programming approach for no-wait flow shop scheduling problem under the interval-valued fuzzy processing time. Processes 9 (2021) 789. [CrossRef] [Google Scholar]
  • I.A. Chaudhry, I.A. Elbadawi, M. Usman and M. Tajammal Chugtai, Minimising total flowtime in a no-wait flow shop (NWFS) using genetic algorithms. Ingenieríe Investigación 38 (2018) 68–79. [Google Scholar]
  • K.-Z. Gao, Q.-K. Pan and J.-Q. Li, Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion. Int. J. Adv. Manuf. Technol. 56 (2011) 683–692. [CrossRef] [Google Scholar]
  • X. Qi, H. Wang, H. Zhu, J. Zhang, F. Chen and J. Yang, Application local neighborhood search algorithm for the no-wait flow shop scheduling with total flow time minimization. Int. J. Prod. Res. 54 (2016) 4957–4972. [CrossRef] [Google Scholar]
  • L.A. Bewoor, V. Chandra Prakash and S.U. Sapkal, Evolutionary hybrid particle swarm optimization algorithm for solving NP-hard no-wait flow shop scheduling problems. Algorithms 10 (2017) 121. [CrossRef] [Google Scholar]
  • C. Qu, Y. Fu, Z. Yi and J. Tan, Application to no-wait flow shop scheduling problem using the flower pollination algorithm based on the hormone modulation mechanism. Complexity 2018 (2018). DOI: 10.1155/2018/1973604. [Google Scholar]
  • R. Hu, X. Wu, B. Qian, J.L. Mao and H.P. Jin, Application enhanced differential evolution algorithm with fast evaluating strategies for TWT-NFSP with SSTs and RTs. Complexity 2020 (2020) 1–11. [CrossRef] [Google Scholar]
  • C. Wang, X. Li and Q. Wang, Application search for no-wait flowshop scheduling problem to minimize maximum lateness. J. Southeast Univ. 26 (2010) 26–30. [Google Scholar]
  • C. Smutnicki, J. Pempera, G. Bocewicz and Z. Banaszak, Application flow-shop scheduling with no-wait constraints and missing operations. Eur. J. Oper. Res. 302 (2022) 39–49. [CrossRef] [Google Scholar]
  • F. Nouri, S. Samadzad and J. Nahr, Meta-heuristics algorithm for two-machine no-wait flow-shop scheduling problem with the effects of learning. Uncertain Supply Chain Manage. 7 (2019) 599–618. [CrossRef] [Google Scholar]
  • B. Liu, L. Wang and Y.-H. Jin, An effective hybrid particle swarm optimization for no-wait flow shop scheduling. Int. J. Adv. Manuf. Technol. 31 (2007) 1001–1011. [CrossRef] [Google Scholar]
  • Q.-K. Pan, L. Wang, M.F. Tasgetiren and B.-H. Zhao, A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion. Int. J. Adv. Manuf. Technol. 38 (2008) 337–347. [CrossRef] [Google Scholar]
  • B. Qian, L. Wang, R. Hu, D. Huang and X. Wang, Application DE-based approach to no-wait flow-shop scheduling. Comput. Ind. Eng. 57 (2009) 787–805. [CrossRef] [Google Scholar]
  • J.-Y. Ding, S. Song, J.N. Gupta, R. Zhang, R. Chiong and C. Wu, An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Appl. Soft Comput. 30 (2015) 604–613. [CrossRef] [Google Scholar]
  • O. Engin and A. Güçlü, A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl. Soft Comput. 72 (2018) 166–176. [CrossRef] [Google Scholar]
  • F. Zhao, H. Liu, Y. Zhang, W. Ma and C. Zhang, Application discrete water wave optimization algorithm for no-wait flow shop scheduling problem. Expert Syst. App. 91 (2018) 347–363. [CrossRef] [Google Scholar]
  • H. Samarghandi and T.Y. ElMekkawy, A meta-heuristic approach for solving the no-wait flow-shop problem. Int. J. Prod. Res. 50 (2012) 7313–7326. [CrossRef] [Google Scholar]
  • F. Zhao, S. Qin, Y. Zhang, W. Ma, C. Zhang and H. Song, Application hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop scheduling problem. Expert Syst. App. 126 (2019) 321–339. [CrossRef] [Google Scholar]
  • M. Rabiee, M. Zandieh and A. Jafarian, Application of a no-wait two-machine flow shop with sequence-dependent setup times and probable rework using robust meta-heuristics. Int. J. Prod. Res. 50 (2012) 7428–7446. [CrossRef] [Google Scholar]
  • K.-C. Ying, Z.-J. Lee, C.-C. Lu and S.-W. Lin, Metaheuristics for scheduling a no-wait flowshop manufacturing cell with sequence-dependent family setups. Int. J. Adv. Manuf. Technol. 58 (2012) 671–682. [CrossRef] [Google Scholar]
  • M. Jabbari and V. Azizi, Lot streaming in no-wait multi product flowshop considering sequence dependent setup times and position based learning factors. Int. J. Eng. 28 (2015) 1031–1039. [Google Scholar]
  • C. Wang, X. Li and Q. Wang, Application tabu search for no-wait flowshop scheduling problem with maximum lateness criterion. Eur. J. Oper. Res. 206 (2010) 64–72. [CrossRef] [Google Scholar]
  • T. Aldowaisan and A. Allahverdi, Minimizing total tardiness in no-wait flowshops. Found. Comput. Decis. Sci. 37 (2012) 149. [CrossRef] [Google Scholar]
  • T.A. Aldowaisan and A. Allahverdi, No-wait flowshop scheduling problem to minimize the number of tardy jobs. Int. J. Adv. Manuf. Technol. 61 (2012) 311–323. [CrossRef] [Google Scholar]
  • K.-Z. Gao, Q.-K. Pan, J.-Q. Li, Y.-T. Wang and J. Liang, A hybrid harmony search algorithm for the no-wait flow-shop scheduling problems. Asia-Pac. J. Oper. Res. 29 (2012) 1250012. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Akhshabi, R. Tavakkoli-Moghaddam and F. Rahnamay-Roodposhti, A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time. Int. J. Adv. Manuf. Technol. 70 (2014) 1181–1188. [CrossRef] [Google Scholar]
  • M. Tonizza Pereira and M. Seido Nagano, Hybrid metaheuristics for the integrated and detailed scheduling of production and delivery operations in no-wait flow shop systems. Comput. Ind. Eng. 170 (2022) 108255. [CrossRef] [Google Scholar]
  • M.S. Nagano, A.A. Da Silva and L.A.N. Lorena, A new evolutionary clustering search for a no-wait flow shop problem with set-up times. Eng. App. Artif. Intell. 25 (2012) 1114–1120. [CrossRef] [Google Scholar]
  • S. Wang, M. Liu and C. Chu, Application branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. Int. J. Prod. Res. 53 (2015) 1143–1167. [CrossRef] [Google Scholar]
  • M.-N. Azaiez, A. Gharbi, I. Kacem, Y. Makhlouf and M. Masmoudi, Two-stage no-wait hybrid flow shop with inter-stage flexibility for operating room scheduling. Comput. Ind. Eng. 168 (2022) 108040. [CrossRef] [Google Scholar]
  • W. Zhong and Y. Shi, Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility. J. Comb. Optim. 35 (2018) 108–125. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Dong, H. Pan, C. Ye, W. Tong and J. Hu, No-wait two-stage flowshop problem with multi-task flexibility of the first machine. Inf. Sci. 544 (2021) 25–38. [CrossRef] [Google Scholar]
  • B. Naderi, M. Khalili and A.A. Khamseh, Application models and a hunting search algorithm for the no-wait flowshop scheduling with parallel machines. Int. J. Prod. Res. 52 (2014) 2667–2681. [CrossRef] [Google Scholar]
  • M. Rabiee, F. Jolai, H. Asefi, P. Fattahi and S. Lim, Application biogeography-based optimisation algorithm for a realistic no-wait hybrid flow shop with unrelated parallel machines to minimise mean tardiness. Int. J. Comput. Integr. Manuf. 29 (2016) 1007–1024. [CrossRef] [Google Scholar]
  • H. Xuan, Q. Zheng, B. Li and X. Wang, Application novel genetic simulated annealing algorithm for no-wait hybrid flowshop problem with unrelated parallel machines. ISIJ Int. 61 (2021) 258–268. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Shao, D. Pi and Z. Shao, Application of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms. Knowl.-Based Syst. 137 (2017) 163–181. [CrossRef] [Google Scholar]
  • F. Zhao, J. Zhao, L. Wang and J. Tang, Application optimal block knowledge driven backtracking search algorithm for distributed assembly no-wait flow shop scheduling problem. Appl. Soft Comput. 112 (2021) 107750. [CrossRef] [Google Scholar]
  • D. Laha and J.N. Gupta, A Hungarian penalty-based construction algorithm to minimize makespan and total flow time in no-wait flow shops. Comput. Ind. Eng. 98 (2016) 373–383. [CrossRef] [Google Scholar]
  • N. Madhushini and C. Rajendran, Branch-and-bound algorithms for scheduling in an m-machine no-wait flowshop. Sādhanā 45 (2020) 1–11. [Google Scholar]
  • J. Schaller and J.M. Valente, Minimizing total earliness and tardiness in a nowait flow shop. Int. J. Prod. Econ. 224 (2020) 107542. [CrossRef] [Google Scholar]
  • F.S. de Almeida and M.S. Nagano, An efficient iterated greedy algorithm for a multi-objective no-wait flow shop problem with sequence dependent setup times. 4OR – Q. J. Oper. Res. (2023). DOI: 10.1007/s10288-023-00535-7. [Google Scholar]
  • R. Tavakkoli-Moghaddam, A. Rahimi-Vahed and A. Mirzaei, Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int. J. Adv. Manuf. Technol. 36 (2008) 969–981. [CrossRef] [Google Scholar]
  • A. Rahimi-Vahed, B. Javadi, M. Rabbani and R. Tavakkoli-Moghaddam, A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem. Eng. Optim. 40 (2008) 331–346. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Khalili, Multi-objective no-wait hybrid flowshop scheduling problem with transportation times. Int. J. Comput. Sci. 7 (2012) 147–154. [Google Scholar]
  • A. Guevara-Guevara, V. Gómez-Fuentes, L. Posos-Rodríguez, N. Remolina-Gómez and E. González-Neira, Earliness/tardiness minimization in a no-wait flow shop with sequence-dependent setup times. J. Project Manage. 7 (2022) 177–190. [CrossRef] [Google Scholar]
  • Q.-K. Pan, M.F. Tasgetiren and Y.-C. Liang, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 35 (2008) 2807–2839. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Riahi and M. Kazemi, A new hybrid ant colony algorithm for scheduling of no-wait flowshop. Oper. Res. 18 (2018) 55–74. [Google Scholar]
  • B. Qian, Z.Q. Zhang, R. Hu, H.P. Jin and J.B. Yang, Application matrix-cube-based estimation of distribution algorithm for no-wait flow-shop scheduling with sequence-dependent setup times and release times. IEEE Trans. Syst. Man Cybern. Syst. 53 (2023) 1492–1503. [CrossRef] [Google Scholar]
  • I. Karacan, O. Senvar and S. Bulkan, Application novel parallel simulated annealing methodology to solve the no-wait flow shop scheduling problem with earliness and tardiness objectives. Processes 11 (2023) 454. [CrossRef] [Google Scholar]
  • B. Qian, L. Wang, D.-X. Huang and X. Wang, Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution. Soft Comput. 13 (2009) 847–869. [CrossRef] [Google Scholar]
  • A. Allahverdi, H. Aydilek and A. Aydilek, No-wait flowshop scheduling problem with two criteria; total tardiness and makespan. Eur. J. Oper. Res. 269 (2018) 590–601. [CrossRef] [Google Scholar]
  • Q.-K. Pan, L. Wang and B. Qian, A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Comput. Oper. Res. 36 (2009) 2498–2511. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Jarboui, M. Eddaly and P. Siarry, Application hybrid genetic algorithm for solving no-wait flowshop scheduling problems. Int. J. Adv. Manuf. Technol. 54 (2011) 1129–1143. [CrossRef] [Google Scholar]
  • X.-P. Liao, Y.-G. Liu and X.-P. Li, Hybrid evolutionary algorithm for no-wait flow shops to minimize makespan and total flowtime. J. Southeast Univ. 24 (2008) 450–454. [Google Scholar]
  • K. Keskin and O. Engin, A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria. SN Appl. Sci. 3 (2021) 1–15. [CrossRef] [Google Scholar]
  • A.C.L. Gomes, M.G. Ravetti and E.G. Carrano, Multi-objective matheuristic for minimization of total tardiness and energy costs in a steel industry heat treatment line. Comput. Ind. Eng. 151 (2021) 106929. [CrossRef] [Google Scholar]
  • W. Shao, D. Pi and Z. Shao, Application Pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait flow-shop scheduling problem with sequence-dependent setup time. IEEE Trans. Autom. Sci. Eng. 16 (2019) 1344–1360. [CrossRef] [Google Scholar]
  • K. Allali, S. Aqil and J. Belabid, Application no-wait flow shop problem with sequence dependent setup time: optimization of makespan and maximum tardiness. Simul. Modell. Pract. Theory 116 (2022) 102455. [CrossRef] [Google Scholar]
  • N. Zhu, F. Zhao, L. Wang, R. Ding, T. Xu and Jonrinaldi, A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows. Expert Syst. App. 198 (2022) 116921. [CrossRef] [Google Scholar]
  • F. Zhao, T. Jiang and L. Wang, Application reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time. IEEE Trans. Ind. Inf. 19 (2023) 8427–8440. [CrossRef] [Google Scholar]
  • Q.-Q. Zeng, J.-Q. Li, R.-H. Li, T.-H. Huang, Y.-Y. Han and H.-Y. Sang, Improved NSGA-II for energy-efficient distributed no-wait flow-shop with sequence-dependent setup time. Complex Intell. Syst. 9 (2023) 825–849. [CrossRef] [Google Scholar]
  • Y. Qin and H. Zhang, Elite particle swarm optimization algorithm for solving the bi-criteria no-wait flexible flow shop problem. Int. J. Grid Distrib. Comput. 9 (2016) 267–232. [CrossRef] [Google Scholar]
  • F. Zhao, X. Hu, L. Wang, T. Xu, N. Zhu and Jonrinaldi, A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem. Int. J. Prod. Res. 61 (2023) 2854–2872. [CrossRef] [Google Scholar]
  • F. Zhao, Z. Xu, X. Hu, T. Xu, N. Zhu and Jonrinaldi, An improved iterative greedy athm for energy-efficient distributed assembly no-wait flow-shop scheduling problem. Swarm Evol. Comput. 81 (2023) 101355. [CrossRef] [Google Scholar]
  • R. Ruiz and A. Allahverdi, New heuristics for no-wait flow shops with a linear combination of makespan and maximum lateness. Int. J. Prod. Res. 47 (2009) 5717–5738. [CrossRef] [Google Scholar]
  • X. Wu and A. Che, Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. Omega 94 (2020) 102117. [CrossRef] [Google Scholar]
  • F.S.D. Almeida and M.S. Nagano, Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times. J. Oper. Res. Soc. 74 (2023) 362–373. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.