Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1233 - 1247
DOI https://doi.org/10.1051/ro/2024026
Published online 27 March 2024
  • M. Ahsanullah, Inference and prediction problems of the generalized Pareto distribution based on record values, in Order Statistics and Nonparametrics: Theory and Applications, edited by P.K. Sen and L.A. Salama. Elsevier, Amsterdam, The Netherlands (1992) 47–57. [Google Scholar]
  • E.K. Al-Hussaini, Predicting observables from a general class of distributions. J. Stat. Planning Inference 79 (1999) 79–91. [CrossRef] [Google Scholar]
  • E.K. Al-Hussaini and F. Al-Awadhi, Bayes two-sample prediction of generalized order statistics with fixed and random sample size. J. Stat. Comput. Simul. 80 (2010) 13–28. [CrossRef] [MathSciNet] [Google Scholar]
  • J.S. Al-Mutairi and M.Z. Raqab, Confidence intervals for quantiles based on samples of random sizes. Stat. Papers 61 (2020) 261–277. [CrossRef] [Google Scholar]
  • A. Asgharzadeh, A.J. Fernández and M. Abdi, Confidence sets for the two-parameter Rayleigh distribution under progressive censoring. Appl. Math. Modell. 47 (2017) 56–667. [Google Scholar]
  • A. Asgharzadeh, S.F. Bagheri, N.A. Ibrahim and M.R. Abubakar, Optimal confidence regions for the two-parameter exponential distribution based on records. Comput. Statist. 35 (2020) 309–326. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Balakrishnan and R. Aggrawalla, Progressive Censoring: Theory, Methods and Applications. Berkhauser, Boston, USA (2000). [Google Scholar]
  • N. Balakrishnan and A.R. Shafay, One- and two-sample Bayesian prediction intervals based on Type II hybrid censored data. Commun. Stat. – Theory Methods 41 (2012) 1511–1531. [CrossRef] [Google Scholar]
  • M.C. Bryson, Heavy-tailed distributions: properties and tests. Technometrics 16 (1974) 61–68. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Castillo, A.S. Hadi, N. Balakrishnan and J.M. Sarabia, Extreme Value and Related Models with Applications in Engineering and Science. Wiley, Hoboken, NJ (2004). [Google Scholar]
  • A.C. Cohen, Progressive censored samples in life testing. Technometrics 5 (1963) 327–329. [CrossRef] [MathSciNet] [Google Scholar]
  • A.C. Cohen, Life testing and early failure. Technometrics 8 (1966) 539–549. [CrossRef] [Google Scholar]
  • A.C. Davison and R.L. Smith, Models for exceedances over high thresholds. J. R. Stat. Soc. B 52 (1990) 393–442. [CrossRef] [Google Scholar]
  • A.J. Fernández, Minimizing the area of a Pareto confidence region. Eur.J. Oper. Res. 221 (2012) 205–212. [CrossRef] [Google Scholar]
  • A.J. Fernández, Smallest Pareto confidence regions and applications. Comput. Statist. Data Anal. 62 (2013) 11–25. [CrossRef] [MathSciNet] [Google Scholar]
  • J.R.M. Hosking and J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339–349. [CrossRef] [MathSciNet] [Google Scholar]
  • J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd edition. John Wiley & Sons, New York (2003). [Google Scholar]
  • K.S. Lomax, Business failures: another example of the analysis of failure data. J. Am. Stat. Assoc. 49 (1954) 847–852. [CrossRef] [Google Scholar]
  • M.M. Mohie El-Din and A.R. Shafay, One-and two-sample Bayesian prediction intervals based on progressively Type-II censored data, Stat. Papers 54 (2013) 287–307. [CrossRef] [Google Scholar]
  • M.M. Mohie El-Din, Y. Abdel-Aty and A.R. Shafay, Two-sample Bayesian prediction intervals of generalized order statistics based on multiply Type II censored data. Commun. Stat. Theory-Methods 41 (2012) 381–392. [CrossRef] [Google Scholar]
  • M.M. Mohie El-Din, A. Sadek and M. Nagy, Bayesian estimation and two-sample prediction based on unified hybrid censored sample. J. Stat. App. Probab. 5 (2016) 439–448. [CrossRef] [Google Scholar]
  • S. Nadarajah and S. Kotz, The exponentiated type distributions. Acta App. Math. 92 (2006) 97–111. [CrossRef] [Google Scholar]
  • R. Valiollahi, M.Z. Raqab, A. Asgharzadeh and F.A. Alqallaft, Estimation and prediction for power Lindley distribution under progressively type II right censored samples. Math. Comput. Simul. 149 (2018) 32–47. [CrossRef] [Google Scholar]
  • S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data. J. Jpn. Stat. Soc. 32 (2002) 155–163. [CrossRef] [Google Scholar]
  • F.S. Wu and C.C. Wu, Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity. J. Stat. Planning Inference 134 (2005) 392–408. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.