IFORS 2023
Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
IFORS 2023
Page(s) 1529 - 1554
DOI https://doi.org/10.1051/ro/2024034
Published online 05 April 2024
  • A. Ala, A. Goli, S. Mirjalili and V. Simic, A fuzzy multi-objective optimization model for sustainable healthcare supply chain network design. Appl. Soft Comput. 150 (2024) 111012. [CrossRef] [Google Scholar]
  • G.R. Amin and S. Al-Muharrami, A new inverse data envelopment analysis model for mergers with negative data. IMA J. Manag. Math. (2016) 1–13. [Google Scholar]
  • G.R. Amin, A. Emrouznejad and S. Gattoufi, Minor and major consolidations in inverse dea: Definition and determination. Comput. Ind. Eng. 103 (2017) 193–200. [CrossRef] [Google Scholar]
  • A. Amirteimoori, S. Kordrostami and M. Sarparast, Modeling undesirable factors in data envelopment analysis. Appl. Math. Comput. 180 (2006) 444–452. [MathSciNet] [Google Scholar]
  • T.-S. Chang, J.-G. Lin and J. Ouenniche, Dea-based nash bargaining approach to merger target selection. Eur. J. Oper. Res. 305 (2023) 930–945. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • L. Chen, Y. Wang, F. Lai and F. Feng, An investment analysis for china’s sustainable development based on inverse data envelopment analysis. J. Clean. Prod. 142 (2017) 1638–1649. [CrossRef] [Google Scholar]
  • Y.H. Chung, R. F¨are and S. Grosskopf, Productivity and undesirable outputs: a directional distance function approach. J. Environ. Manag. 51 (1997) 229–240. [CrossRef] [Google Scholar]
  • Z.D. Daryani, G. Tohidi, B. Daneshian, S. Razavyan and L.F. Hosseinzadeh, Inverse dea in two-stage systems based on allocative efficiency. J. Intell. Fuzzy Syst. 40 (2021) 591–603. [CrossRef] [Google Scholar]
  • L. Dong Joon, Inverse dea with frontier changes for new target setting. Eur. J. Oper. Res. 254 (2016) 510–516. [CrossRef] [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. [Google Scholar]
  • A. Emrouznejad, G.-L. Yang and G.R. Amin, A novel inverse dea model with application to allocate the CO2 emissions quota to different regions in chinese manufacturing industries. J. Oper. Res. Soc. (2018) 1–12. [Google Scholar]
  • M. Eyni, G. Tohidi and S. Mehrabeian, Applying inverse dea and cone constraint to sensitivity analysis of dmus with undesirable inputs and outputs. J. Oper. Res. Soc. 68 (2017) 34–40. [CrossRef] [Google Scholar]
  • R. Fare and S. Grosskopf, Modeling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 157 (2004) 242–245. [CrossRef] [Google Scholar]
  • R. Fare, S. Grosskopf, C. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 71 (1989) 90–98. [CrossRef] [Google Scholar]
  • S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse dea method for merging banks. IMA J. Manag. Math. 25 (2014) 73–87. [Google Scholar]
  • M. Ghiyasi, Inverse dea based on cost and revenue efficiency. Comput. Ind. Eng. 114 (2017) 258–263. [CrossRef] [Google Scholar]
  • M. Ghiyasi, Efficiency improvement and resource estimation: A tradeoff analysis. Int. J. Product. Qual. Manag. 25 (2018) 151–169. [CrossRef] [Google Scholar]
  • M. Ghiyasi, Novel criterion models in the inverse dea problem. Int. J. Oper. Res. 35 (2019) 20–36. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ghobadi, Inverse dea using enhanced russell measure in the presence of fuzzy data. Int. J. Ind. Math. 10 (2018) 1–16. [Google Scholar]
  • S. Ghobadi, A dynamic dea model for resource allocation. Int. J. Math. Oper. Res. 17 (2020) 50–77. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ghobadi, Merging decision-making units with interval data. RAIRO:RO 55 (2021) 1605–1630. [Google Scholar]
  • S. Ghobadi and S. Jahangiri, Optimal allocation of resources using the ideal-solutions. J. New Res. Math. 5 (2019) 121–134. [Google Scholar]
  • S. Ghobadi and K. Soleimani-Chamkhorami, Merging decision-making units with fuzzy data. Asia-Pac. J. Oper. Res. (2021) 2140012. [Google Scholar]
  • F. Guijarro, M. Martinez-Gomez and D. Visbal-Cadavid, A model for sector restructuring through genetic algorithm and inverse dea. Expert Syst. Appl. 154 (2020) 113422. [CrossRef] [Google Scholar]
  • A. Hadi-vencheh, A. Hatami-marbini and Z.K.G. Ghelej Beigi, An inverse optimization model for imprecise data envelopment analysis. Opimization 64 (2015) 2441–2452. [CrossRef] [Google Scholar]
  • G. Halkos and K.N. Petrou, Treating undesirable outputs in dea: A critical review. Econ. Anal. Policy 62 (2019) 97–104. [CrossRef] [Google Scholar]
  • X. Hu, J. Li, X. Li and J. Cui, A revised inverse data envelopment analysis model based on radial models. Mathematics 8 (2020) 1–17. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and S. Ghobadi, Inverse dea under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [CrossRef] [Google Scholar]
  • H. Kader and J. Spaak, Merger and acquisition: The impact on organizational culture, creativity and product innovation - A case study, Bachelor thesis, Department of Business Studies, Uppsala University (2014). [Google Scholar]
  • C. Kao and S.-N. Hwang, Measuring the effects of undesirable outputs on the efficiency of production units. Eur. J. Oper. Res. 292 (2021) 996–1003. [CrossRef] [Google Scholar]
  • S. Kordrostami and M.J.S. Noveiri, The overall efficiency of decision making units with undesirable outputs. 46th Annual Iranian Mathematics Conference, 25–28 August. Yazd University, Iran (2015) 1–4. [Google Scholar]
  • W. Liu and J. Sharp, Dea models via goal programming, in data envelopment analysis in the service sector, edited by G. Westermann, Deutscher Universitatsverlag, Wiesbaden, Germany (1999) 97–101. [Google Scholar]
  • P. Liu and H. Xu, Integrated one-stage models considering undesirable outputs and weighting preference in slacks-based measure of efficiency and superefficiency. J. Oper. Res. Soc. (2022) 1–13. [Google Scholar]
  • W.B. Liu, W. Meng, X.X. Li and D.Q. Zhang, Dea models with undesirable inputs and outputs. Ann. Oper. Res. 173 (2010) 177–194. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Lotfi, B. Kargar, A. Gharehbaghi, M. Afshar, M.S. Rajabi and N. Mardani, A data-driven robust optimization for multi-objective renewable energy location by considering risk. Environ. Dev. Sustain. (2022) 1–22. [Google Scholar]
  • R. Lotfi, A. Gharehbaghi, M.S. Mehrjardi, K. Kheiri and S.S. Ali, A robust, resilience multi-criteria decision-making with risk approach: A case study for renewable energy location. Environ. Sci. Pollut. Res. 30 (2023) 43267–43278. [CrossRef] [Google Scholar]
  • M. Majid Kalantary and R. Farzipoor Saen, Assessing sustainability of supply chains: An inverse network dynamic dea model. Comput. Ind. Eng. 135 (2019) 1224–1238. [CrossRef] [Google Scholar]
  • H. Moazeni, B.A. Shirani and S.R. Hejazi, An integrated approach for the merger of small and medium-sized industrial units. RAIRO:RO 57 (2023) 939–965. [CrossRef] [EDP Sciences] [Google Scholar]
  • H. Omrani, M. Shamsi and A. Emrouznejad, Evaluating sustainable efficiency of decision-making units considering undesirable outputs: An application to airline using integrated multi-objective dea-topsis. Environ. Dev. Sustain. 25 (2023) 5899–5930. [CrossRef] [PubMed] [Google Scholar]
  • A. Oukil, R.E. Kennedy, A. Al-Hajri and A.A. Soltani, Unveiling the potential of hotel mergers: A hybrid dea approach for optimizing sector-wide performance in the hospitality industry. Int. J. Hosp. Manag. 116 (2024) 103620. [CrossRef] [Google Scholar]
  • F.S. Parashkouh, S. Kordrostami, A. Amirteimoori and A. Ghane-Kanafi, Modelling undesirable products in non-parametric performance analysis. J. Model. Manag. 16 (2021) 267–287. [CrossRef] [Google Scholar]
  • J.T. Pastor, J.L. Ruiz and I. Sirvent, An enhanced dea russell graph efficiency measure. Eur. J. Oper. Res. 115 (1999) 596–607. [CrossRef] [Google Scholar]
  • N.A. Ramli, S. Munisamy and B. Arabi, Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector. Ann. Oper. Res. 211 (2013) 381–398. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 142 (2002) 16–20. [Google Scholar]
  • X. Shi, A. Emrouznejad and W. Yu, Overall efficiency of operational process with undesirable outputs containing both series and parallel processes: A sbm network dea model. Expert Syst. Appl. 178 (2021) 115062. [CrossRef] [Google Scholar]
  • T. Skevas, S.E. Stefanou and A.O. Lansink, Pesticide use, environmental spillovers and efficiency: A dea risk-adjusted efficiency approach applied to dutch arable farming. Eur. J. Oper. Res. 237 (2014) 658–664. [CrossRef] [Google Scholar]
  • K. Soleimani-Chamkhorami, F.H. Lotfi, G.R. Jahanshahloo and M. Rostamy-Malkhalifeh, Preserving cost and revenue efficiency through inverse data envelopment analysis models. INFOR: Inf. Syst. Oper. Res. 58 (2020) 561–578. [Google Scholar]
  • K. Soleimani-Chamkhorami, F.H. Lotfi, G.R. Jahanshahloo and M. Rostamy-Malkhalifeh, A ranking system based on inverse data envelopment analysis. IMA J. Manag. Math. 31 (2020) 367–385. [MathSciNet] [Google Scholar]
  • F.L. Takahashi and M.R. Vasconcelos, Bank efficiency and undesirable output: An analysis of non-performing loans in the brazilian banking sector. Finance Res. Lett. 59 (2024) 104651. [CrossRef] [Google Scholar]
  • F. Taher, B. Daneshian, G. Tohidi, F. Hosseinzadeh lotfi and F.M. Khiyabani, Estimation of undesirable outputs and desirable inputs along with efficiency improving for dmus with interval data. J. New Res. Math. 7 (2021) 65–72. [Google Scholar]
  • M. Toloo and J. Hanclova, Multi-valued measures in dea in the presence of undesirable outputs. Omega 94 (2020) 102041. [CrossRef] [Google Scholar]
  • D. Tyteca, Linear programming models for the measurment of enviromental performance of firms concepts and empirical results. J. Product. Anal. 8 (1997) 183–197. [CrossRef] [Google Scholar]
  • A.H. Vencheh, R. Kazemi Matin and M. Tavassoli Kajani, Undesirable factors in efficiency measurement. Appl. Math. Comput. 163 (2005) 547–552. [MathSciNet] [Google Scholar]
  • M. Wegener and G.R. Amin, Minimizing greenhouse gas emissions using inverse dea with an application in oil and gas. Expert Syst. Appl. 122 (2019) 369–375. [CrossRef] [Google Scholar]
  • V. Wojcik, H. Dyckhoff and S. Gutgesell, The desirable input of undesirable factors in data envelopment analysis. Ann. Oper. Res. 259 (2017) 461–484. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Xiao, Y. Li, A. Emrouznejad, J. Xie and L. Liang, Estimation of potential gains from bank mergers: A novel two-stage cost efficiency dea model. J. Oper. Res. Soc. 68 (2017) 1045–1055. [CrossRef] [Google Scholar]
  • E. Zenodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manag. Math. 31 (2020) 139–16. [MathSciNet] [Google Scholar]
  • X. Zhang and J. Cui, a project evaluation system in the state economic information system of china: An operation research practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452. [Google Scholar]
  • P. Zhou, K. Leng Poh and B. Wah Ang, A non-radial dea approach to measuring environmental performance. Eur. J. Oper. Res. 178 (2007) 1–9. [CrossRef] [Google Scholar]
  • Z. Zhou, G. Xu, C. Wang and J. Wu, Modeling undesirable output with a dea approach based on an exponential transformation: An application to measure the energy efficiency of chinese industry. J. Clean. Prod. 236 (2019) 117717. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.