Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
|
|
---|---|---|
Page(s) | 2015 - 2027 | |
DOI | https://doi.org/10.1051/ro/2024071 | |
Published online | 03 May 2024 |
- K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in claw-free graphs. Discrete Math. 243 (2002) 195–200. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bauer, G. Katona, D. Kratsch and H. Veldman, Chordality and 2-factors in tough graphs. Discrete Appl. Math. 99 (2000) 323–329. [CrossRef] [MathSciNet] [Google Scholar]
- V. Chvátal, Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973) 215–228. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Egawa and M. Furuya, The existence of a path-factor without small odd paths. Electron. J. Comb. 25 (2018) #P1.40. [Google Scholar]
- W. Gao and W. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs. Colloquium Math. 147 (2017) 55–66. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, L. Liang and Y. Chen, An isolated toughness condition for graphs to be fractional (k, m)-deleted graphs. Utilitas Math. 105 (2017) 303–316. [MathSciNet] [Google Scholar]
- W. Gao, J. Guirao and Y. Chen, A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sinica-English Ser. 35 (2019) 1227–1237. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, W. Wang and Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings. Int. J. Intell. Syst. 36 (2021) 1133–1158. [CrossRef] [Google Scholar]
- A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B 88 (2003) 195–218. [CrossRef] [Google Scholar]
- M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two. Discrete Math. 283 (2004) 129–135. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory 28 (2008) 551–556. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics. Discrete Appl. Math. 159 (2011) 112–127. [CrossRef] [MathSciNet] [Google Scholar]
- M. Las Vergnas, An extension of Tutte’s 1-factor theorem. Discrete Math. 23 (1978) 241–255. [CrossRef] [MathSciNet] [Google Scholar]
- G. Liu and L. Zhang, Toughness and the existence of fractional k-factors of graphs. Discrete Math. 308 (2008) 1741–1748. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Degree conditions for the existence of a {P2, P5}-factor in a graph. RAIRO-Oper. Res. 57 (2023) 2231–2237. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Independence number, minimum degree and path-factors in graphs. Proc. Rom. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 229–234. [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Some results on star-factor deleted graphs. Filomat 38 (2024) 1101–1107. [MathSciNet] [Google Scholar]
- J. Wu, Path-factor critical covered graphs and path-factor uniform graphs. RAIRO-Oper. Res. 56 (2022) 4317–4325. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Yang, Y. Ma and G. Liu, Fractional (g, f)-factors in graphs. Appl. Math. J. Chin. Univ. Ser. A 16 (2001) 385–390. [Google Scholar]
- Y. Yuan and R. Hao, A neighborhood union condition for fractional ID-[a, b]-factor-critical graphs. Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 775–781. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. 323 (2022) 343–348. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. (2022). DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou, Degree conditions and path factors with inclusion or exclusion properties. Bull. Math. Soc. Sci. Math. Roumanie 66 (2023) 3–14. [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. 39 (2023) 232–238. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory 43 (2023) 233–244. [Google Scholar]
- S. Zhou and H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs. Linear Algebra Appl. 661 (2023) 149–162. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou and Y. Zhang, Sufficient conditions for fractional [a, b]-deleted graphs. Indian J. Pure Appl. Math. (2024). DOI: 10.1007/s13226-024-00564-w. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, Z. Sun and F. Yang, A result on P≥3-factor uniform graphs. Proc. Rom. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 3–8. [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Mathematicae 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Q. Pan and L. Xu, Isolated toughness for fractional (2, b, k)-critical covered graphs. Proc. Rom. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 24 (2023) 11–18. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Some sufficient conditions for path-factor uniform graphs. Aequationes Mathematicae 97 (2023) 489–500. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, D-index and Q-index for spanning trees with leaf degree at most k in graphs. Discrete Math. 347 (2024) 113927. [CrossRef] [Google Scholar]
- S. Zhou, Y. Zhang and Z. Sun, The Aα-spectral radius for path-factors in graphs. Discrete Math. 347 (2024) 113940. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.