Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
|
|
---|---|---|
Page(s) | 1401 - 1428 | |
DOI | https://doi.org/10.1051/ro/2024016 | |
Published online | 05 April 2024 |
- M. Bilal and L.O. Oyedele, Big Data with deep learning for benchmarking profitability performance in project tendering. J. Expert Syst. App. 147 (2020) 113194. [CrossRef] [Google Scholar]
- G. Booch, J. Rumbaugh and I. Jacobson, Unified Modeling Language User Guide, The, 2nd edition. Addison-Wesley Professional (2005). [Google Scholar]
- D.C. Broadstock, A. Collins, L.C. Hunt and K. Vergos, Voluntary disclosure, greenhouse gas emissions and business performance: assessing the first decade of reporting. Br. Acc. Rev. 50 (2018) 48–59. [CrossRef] [Google Scholar]
- Capability Maturity Model Institute, CMMI for Development, Version 1.3, SEI-2010-TR-033 (2010). [Google Scholar]
- B.J. Clarke, F.E. Otto and R.G. Jones, Inventories of extreme weather events and impacts: implications for loss and damage from and adaptation to climate extremes. J. Clim. Risk Manage. 32 (2021) 100285. [CrossRef] [Google Scholar]
- E. Croci, B. Lucchitta, G. Janssens-Maenhout, S. Martelli and T. Molteni, Urban CO2 mitigation strategies under the covenant of Mayors: an assessment of 124 European cities. J. Cleaner Prod. 169 (2017) 161–177. [CrossRef] [Google Scholar]
- G. Datola, Implementing urban resilience in urban planning: a comprehensive framework for urban resilience evaluation. (2023), J. Sustain. Cities Soc. 98 (2023) 104821. [CrossRef] [Google Scholar]
- S. De Gregorio Hurtado, M. Olazabal, M. Salvia, F. Pietrapertosa, E. Olazabal, D. Geneletti and D. Reckien, Implications of governance structures on urban climate action: evidence from Italy and Spain, in BC3 Working Paper Series (2014). [Google Scholar]
- S.B. Dransfield, N.I. Fisher and N.J. Vogel, Using statistics and statistical thinking to improve organisational performance (with discussion). Int. Stat. Rev. 67 (1999) 99–150. [CrossRef] [Google Scholar]
- D.C. Ferreira, J.R. Figueira, S. Greco and R.C. Marques, Data envelopment analysis models with imperfect knowledge of input and output values: an application to Portuguese public hospitals. J. Expert Syst. App. 231 (2023) 120543. [CrossRef] [Google Scholar]
- N.I. Fisher, A comprehensive approach to problems of performance measurement. J. R. Stat. Soc. A 182 (2019) 755–803. [CrossRef] [Google Scholar]
- S. Giest, Big data analytics for mitigating carbon emissions in smart cities: opportunities and challenges. Eur. Planning Stud. 25 (2017) 941–957. [CrossRef] [Google Scholar]
- A. Gouldson, S. Colenbrander, A. Sudmant, N. Godfrey, J. Millward-Hopkins, W. Fang and X. Zhao, (2015), Accelerating low-carbon development in the world’s cities, in Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC (2015). [Google Scholar]
- J. Heinonen, M. Jalas, J.K. Juntunen, S. Ala-Mantila and S. Junnila, Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications study of Finland. Environ. Res. Lett. 8 (2013) 025003. [CrossRef] [Google Scholar]
- International Organization for Standardization, Process assessment model for software life cycle processes, TS-33061. [Google Scholar]
- R. Kongboon and S.H. Gheewala and S. Sampattagul, Greenhouse gas emissions inventory data acquisition and analytics for low carbon cities. J. Cleaner Prod. 343 (2022) 130711. [CrossRef] [Google Scholar]
- G. Liebchen and M. Shepperd, Data sets and data quality in software engineering: eight years on, in Proceedings of the The 12th International Conference on Predictive Models and Data Analytics in Software Engineering. PROMISE 2016. Vol 122. Association for Computing Machinery (2016) 1–4. [Google Scholar]
- Y. Lou, W.M. Jayantha, L. Shen, Z. Liu and T. Shu, The application of low-carbon city (LCC) indicators – a comparison between academia and practice. Sustain. Cities Soc. 51 (2019) 101677. [CrossRef] [Google Scholar]
- T. Mettler, P. Rohner and R. Winter, Towards a classification of maturity models in information systems, in Management of the Interconnected World. Physica-Verlag HD, Heidelberg (2010) 333–340. [Google Scholar]
- S. Mirjalili and J.S. Dong, Multi-Objective Optimization using Artificial Intelligence Techniques. SpringerBriefs in Applied Sciences and Technology (2019) XI–58. [Google Scholar]
- E.L. Monteiro and R.S. Pitangueira Maciel, Maturity models architecture: a large systematic mapping. Revista Brasileira de Sistemas de Informação (Braz. J. Inf. Syst). 13 (2020) 110–140. [Google Scholar]
- S.M. Papalexiou and A. Montanari, Global and regional increase of precipitation extremes under global warming. Water Res. Res. 55 (2019) 4901–4914. [CrossRef] [Google Scholar]
- D. Parmenter, Key Performance Indicators: Developing, Implementing, and Using Winning KPIs. John Wiley & Sons (2010). [Google Scholar]
- R. Patriarca, F. Simone and G. Di Gravio, Supporting weather forecasting performance management at aerodromes through anomaly detection and hierarchical clustering. J. Expert Syst. App. 213 (2022) 119210. [Google Scholar]
- M.C. Paulk, B. Curtis, M.B. Chrissis and C.V. Weber, Capability maturity model, version 1.1. IEEE Softw. 10 (1993) 18–27. [Google Scholar]
- M.C. Paulk, B. Curtis, M.B. Chrissis and C.V. Weber, Capability maturity model, version 1.2. IEEE Softw. 10 (2006) 18–27. [Google Scholar]
- F. Pietrapertosa, M. Salvia, S. De Gregorio Hurtado, V. D’Alonzo, J.M. Church, D. Geneletti and D. Reckien, Urban climate change mitigation and adaptation planning: are Italian cities ready? Cities 91 (2019) 93–105. [CrossRef] [Google Scholar]
- B. Pillain, E. Gemechu and G. Sonnemann, Identification of key sustainability performance indicators and related assessment methods for the carbon fiber recycling sector. Ecol. Indic. 72 (2017) 833–847. [CrossRef] [Google Scholar]
- D. Reckien, J. Flacke, M. Olazabal and O. Heidrich, The influence of drivers and barriers on urban adaptation and mitigation plans: an empirical analysis of European cities. PLoS One 10 (2015) e0135597. [CrossRef] [PubMed] [Google Scholar]
- H. Ritchie and M. Roser and P. Rosado, CO2 and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (2020). [Google Scholar]
- Y. Sangsefidi, A. Barnes, M. Merrifield and H. Davani, Data-driven analysis and integrated modeling of climate change impacts on coastal groundwater and sanitary sewer infrastructure. J. Sustain. Cities Soc. 99 (2023) 104914. [CrossRef] [Google Scholar]
- M. Shepperd, Q. Song, Z. Sun and C. Mair, Data quality: some comments on the NASA software defect datasets. IEEE Trans. Softw. Eng. 39 (2013) 1208–1215. [CrossRef] [Google Scholar]
- R.E.H. Sims, R.N. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, et al. (2007), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Energy Supply. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007). [Google Scholar]
- P. Smith, The use of performance indicators in the public sector. J. R. Stat. Soc. Ser. A 153 (1990) 53–72. [CrossRef] [Google Scholar]
- P.C. Smith and A. Street, Measuring the efficiency of public services: the limits of analysis. J. R. Stat. Soc. Ser. A 168 (2005) 401–417. [CrossRef] [Google Scholar]
- B. Srdjevic and Z. Srdjevic, Prioritisation in the analytic hierarchy process for real and generated comparison matrices. J. Expert Syst. App. 225 (2023) 120015. [CrossRef] [Google Scholar]
- K. Tiwari and M. Shadab Khan, Sustainability accounting and reporting in the industry 4.0. J. Cleaner Prod. 258 (2020) 120783. [CrossRef] [Google Scholar]
- L.P. Zhang and P. Zhou, A non-compensatory composite indicator approach to assessing low-carbon performance. Eur. J. Oper. Res. 270 (2018) 352–361. [CrossRef] [Google Scholar]
- C. Zhao and Z. Sahni, String correction using the Damerau–Levenshtein distance, in 7th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2017). Orlando, FL, USA (2017) 20–47. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.