Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1375 - 1399
DOI https://doi.org/10.1051/ro/2024039
Published online 05 April 2024
  • F. Abergel, J. Bouchaud, T. Foucault, C. Lehalle and M. Rosenbaum, Market Microstructure: Confronting Many Viewpoints. John Wiley & Sons, Ltd (2012). [CrossRef] [Google Scholar]
  • M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book. Quant. Finance 8 (2008). [Google Scholar]
  • M. Avellaneda, J. Reed and S. Stoikov, Forecasting prices from level-i quotes in the presence of hidden liquidity. Algorithmic Finance 1 (2011) 35–43. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Biais and P. Weill, Liquidity shocks and order book dynamics, Technical report, National Bureau of Economic Research (2009). [CrossRef] [Google Scholar]
  • B. Biais, P. Hillion and C. Spatt, An empirical analysis of the limit order book and the order flow in the paris bourse. J. Finance 50 (1995) 1655–1689. [CrossRef] [Google Scholar]
  • J.P. Bouchaud, Radical complexity. Entropy 23 (2021) 1676. [CrossRef] [PubMed] [Google Scholar]
  • J.P. Bouchaud, D. Farmer and F. Lillo, How market slowly digest changes in supply and demand. In: Handbook of Financial Markets: Dynamics and Evolutions. Elsevier, Academic Press (2009) 57–160. [CrossRef] [Google Scholar]
  • P.K. Clark, Subordinated stochastic process model with finite variance for speculative prices. Econometrica 41 (1973) 135–155. [CrossRef] [Google Scholar]
  • R. Cont and A. De Larrard, Price dynamics in a markovian limit order market. SIAM J. Financ. Math. 4 (2013) 1–25. [CrossRef] [Google Scholar]
  • R. Cont and M. Mueller, Stochastic PDE Models of Limit Order Book Dynamics (2017). [Google Scholar]
  • R. Cont and A. Kukanov, Optimal order placement in limit order markets. Quant. Finance 17 (2017) 21–39. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Cont and M.S. Mueller, A Stochastic Partial Differential Equation Model for Limit Order Book Dynamics. Available at SSRN (2019) 3366536. [Google Scholar]
  • R. Cont, S. Stoikov and R. Talreja, A stochastic model for order book dynamics. Oper. Res. 58 (2010) 549–563. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Cont, A. Kukanov and S. Stoikov, The price impact of order book events. J. Financ. Econom. 12 (2014) 47–88. [Google Scholar]
  • E.F. Fama, The behavior of stock-market prices. J. Bus. 38 (1965) 34–105. [CrossRef] [Google Scholar]
  • J.D. Farmer and F. Lillo, On the origin of power laws in financial markets. Quant. Finance 4 (2004) 7–10. [CrossRef] [Google Scholar]
  • D. Farmer, L. Gillemot, F. Lillo, S. Mike and A. Sen, What really causes large price changes. Quant. Finance 4 (2004) 383–397. [CrossRef] [Google Scholar]
  • G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press (1995). [CrossRef] [Google Scholar]
  • A. Fosset, J.P. Bouchaud and M. Benzaquen, Endogenous liquidity crises. J. Stat. Mech. Theory Exp. 2020 (2020) 063401. [CrossRef] [Google Scholar]
  • X. Gabaix, P. Gopikrishnan, V. Plerou and H.E. Stanley, A theory of power-law distributions in financial market fluctuations. Nature 423 (2003) 267–270. [CrossRef] [PubMed] [Google Scholar]
  • J. Hasbrouck, Empirical Market Microstructure. Oxford University Press (2007). [CrossRef] [Google Scholar]
  • B. Hollield, R.A. Miller and P. Sandas, Empirical analysis of limit order markets. Rev. Econ. Stud. 71 (2004) 10271063. [Google Scholar]
  • W. Huang, C.A. Lehalle and M. Rosenbaum, Simulating and analyzing order book data: The queue-reactive model. J. Am. Stat. Assoc. 110 (2015) 107–122. [CrossRef] [Google Scholar]
  • G.L. Jones, On the Markov chain central limit theorem. Probab. Surv. 1 (2004) 299–320. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Logachov, O. Logachova and A. Yambartsev, Large deviations in a population dynamics with catastrophes. Stat. Probab. Lett. 149 (2019) 29–37. [CrossRef] [Google Scholar]
  • A.V.E. Logachov, Y.M. Sukhov, N.D. Vvedenskaya and A.A. Yambartsev, A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Sib. Electron. Math. Rep. 17 (2020) 1258–1269. [Google Scholar]
  • M. Menshikov, S. Popov and A. Wade, Non-homogeneous random walks: Lyapunov function methods for near-critical stochastic systems. Cambridge University Press, Vol. 209 (2016). [CrossRef] [Google Scholar]
  • A.A. Mogulskii, The large deviation principle for a compound Poisson process. Sib. Adv. Math. 27 (2017) 160–186. [CrossRef] [Google Scholar]
  • A.A. Mogulskii, The extended large deviation principle for a process with independent increments. Sib. Math. J. 58 (2017) 515–524. [CrossRef] [MathSciNet] [Google Scholar]
  • I.P. Natanson, Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York (1964). [Google Scholar]
  • J.R. Norris, Markov Chain. Cambridge University Press (1997). [CrossRef] [Google Scholar]
  • A.A. Obizhaeva and A. Wang, Optimal trading strategy and supply/demand dynamics. J. Financ. Mark. 16 (2013) 1–32. [CrossRef] [Google Scholar]
  • A. Ponzi, F. Lillo and R. Mantegna, Market reaction to temporary liquidity crisis and the permanent market impact. Preprint: arXiv:0312703v2 (2006). [Google Scholar]
  • F. Riesz and B. Szökefalvi-Nagy, Functional Analysis. Dover, New York (1990). [Google Scholar]
  • I. Rosu, A dynamic model of the limit order book. Rev. Financ. Stud. 22 (2009) 4601–4641. [CrossRef] [Google Scholar]
  • R. Ruan, E. Bacry and J.F. Muzy, The self-exciting nature of the bid-ask spread dynamics. Preprint: arXiv:2303.02038 (2023). [Google Scholar]
  • E. Smith, J. Doyne Farmer, L. Gillemot and S. Krishnamurthy, Statistical theory of the continuous double auction. Quant. Finance 3 (2003) 481–514. [CrossRef] [MathSciNet] [Google Scholar]
  • N.D. Vvedenskaya, A.V. Logachov, Y.M. Suhov and A.A. Yambartsev, A principle of large deviations for birth-death processes with a linear rate of downward jumps. J. Appl. Probab. (2023) 1–21. [Google Scholar]
  • B. Zheng, F. Roueff and F. Abergel, Modelling bid and ask prices using constrained Hawkes processes: Ergodicity and scaling limit. SIAM J. Financ. Math. 5 (2014) 99–136. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.