Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2239 - 2259
DOI https://doi.org/10.1051/ro/2024084
Published online 10 June 2024
  • A. Agrawal, N. Ghune, S. Prakash and M. Ramteke, Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP. Expert Syst. Appl. 181 (2021) 115192. [CrossRef] [Google Scholar]
  • A. Bassaleh and E. Duman, Java code for “Data for the Turkish Cashier Problem with Time Windows (TCPwTW)” (2023). https://github.com/AhmadBassaleh/TCPwTWData. [Google Scholar]
  • E. Duman, A new application of the traveling salesman problem: the turkish cashier problem. Comput. Appl. Math. 21 (2022) 259–268. [Google Scholar]
  • E. Duman and I. Or, Precedence constrained TSP arising in printed circuit board assembly. Int. J. Prod. Res. 42 (2004) 67–78. [Google Scholar]
  • T. Duman and E. Duman, Solving a new application of asymmetric TSP by modified migrating birds optimization algorithm. Evol. Intell. (2023). [Google Scholar]
  • X. Geng, Z. Chen, W. Yang, D. Shi and K. Zhao, Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 11 (2011) 3680–3689. [CrossRef] [Google Scholar]
  • F. Glover, G. Gutin, A. Yeo and A. Zverovich, Construction heuristics for the asymmetric TSP. Eur. J. Oper. Res. 129 (2001) 555–568. [CrossRef] [Google Scholar]
  • H. Hashimoto, T. Ibaraki, S. Imahori and M. Yagiura, The vehicle routing problem with flexible time windows and traveling times. Discrete Appl. Math. 154 (2006) 2271–2290. [CrossRef] [MathSciNet] [Google Scholar]
  • X. He, Q.K. Pan, L. Gao and J. Neufeld, An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem. Eur. J. Oper. Res. (2023). [Google Scholar]
  • M. Junger, G. Reinelt and G. Rinaldi, The traveling salesman problem. Handbooks Oper. Res. Manag. Sci. 7 (1995) 225–330. [CrossRef] [Google Scholar]
  • H. Kona, A. Burde and D. Zanwar, A review of traveling salesman problem with time window constraint. IJIRST-Int. J. Innov. Res. Sci. Eng. Technol. 2 (2015). [Google Scholar]
  • R. Lahyani, M. Khemakhem and F. Semet, A unified matheuristic for solving multi-constrained traveling salesman problems with profits. EURO J. Comput. Optim. 5 (2017) 393–422. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Lenstra and A. Kan, Complexity of vehicle routing and scheduling problems. Networks 11 (1981) 221–227. [CrossRef] [Google Scholar]
  • T. Rao, A comparative evaluation of GA and SA TSP in a supply chain network. Mater. Today: Proc. 4 (2017) 2263–2268. [CrossRef] [Google Scholar]
  • M. Shahmanzari, D. Aksen and S. Salhi, Formulation and a two-phase matheuristic for the roaming salesman problem: Application to election logistics. Eur. J. Oper. Res. 280 (2020) 656–670. [CrossRef] [Google Scholar]
  • X. Shi, Y. Liang, H. Lee, C. Lu and Q. Wang, Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103 (2007) 169–176. [CrossRef] [Google Scholar]
  • R. Silva, E. Venites Filho and A. Alves, A thorough study of the performance of simulated annealing in the traveling salesman problem under correlated and long tailed spatial scenarios. Phys. A: Stat. Mech. Appl. 577 (2021) 126067. [CrossRef] [Google Scholar]
  • R. Skinderowicz, Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl. Soft Comput. 120 (2022) 108653. [CrossRef] [Google Scholar]
  • M. Solomon and J. Desrosiers, Survey Paper–Time Window Constrained Routing and Scheduling Problems. Transp. Sci. 22 (1988) 1–13. [CrossRef] [Google Scholar]
  • T. Srinivas Rao, A simulated annealing approach to solve a multi traveling salesman problem in a FMCG company. Mater. Today: Proc. 46 (2021) 4971–4974. [CrossRef] [Google Scholar]
  • A. Subramanian and M. Battarra, An iterated local search algorithm for the travelling salesman problem with pickups and deliveries. J. Oper. Res. Soc. 64 (2013) 402–409. [CrossRef] [Google Scholar]
  • İ Tarhan and C. Oğuz, A matheuristic for the generalized order acceptance and scheduling problem. Eur. J. Oper. Res. 299 (2022) 87–103. [CrossRef] [Google Scholar]
  • V. Tongur and E. Ülker, The analysis of migrating birds optimization algorithm with neighborhood operator on traveling salesman problem. In: Intelligent and Evolutionary Systems: The 19th Asia Pacific Symposium, IES 2015, Bangkok, Thailand, November 2015, Proceedings (2016) 227–237. [Google Scholar]
  • S. Tonyali and A. Alkaya, Application of recently proposed metaheuristics to the sequence dependent TSP. In: Advanced Computational Methods for Knowledge Engineering: Proceedings of 3rd International Conference on Computer Science, Applied Mathematics and Applications-ICCSAMA 2015 (2015) 83–94. [Google Scholar]
  • M. Uwaisy, Z. Baizal and M. Reditya, Recommendation of scheduling tourism routes using tabu search method (case study bandung). Procedia Comput. Sci. 157 (2019) 150–159. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.